
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Exploring Multi-View Perspectives on Deep Reinforcement
Learning Agents for Embodied Object Navigation in Virtual

Home Environments
Xiaotian Liu

liu.x@queensu.ca

Queen’s University

Kingston, Ontario, Canada

Victoria Armstrong

victoria.armstrong@queensu.ca

Queen’s University

Kingston, Ontario, Canada

Sara Nabil

sara.nabil@queensu.ca

Queen’s University

Kingston, Ontario, Canada

Christian Muise

christian.muise@queensu.ca

Queen’s University

Kingston, Ontario, Canada

ABSTRACT
Recent years have brought the exploration of embodied reinforce-

ment learning agents in a variety of domains. One of the advantages

of artificial agents is that they can obtain visual inputs simultane-

ously using multiple input devices. This work explores multi-view

reinforcement learning for object navigation tasks in 3D rendered

virtual home environments using AI2-THOR. We trained CNN

based Deep Q-learning embodied agents with egocentric, allocen-

tric, and combined egocentric-allocentric perspectives to locate an

object in an unknown environment. We compared the results of the

three RL agents, and evaluated them by both reward improvement

rate, and reward obtained. We demonstrate that the egocentric

perspective allows for faster reward accumulation in the earlier

episodes, whereas the allocentric agents obtained better long-term

rewards. Interesting results arise from the combined allocentric and

egocentric perspective, where we found that the agent had the best

overall results by harnessing the benefits of each perspective. The

results show that while single perspective embodied agents each

have their own advantages, combining both inputs yields the best

overall reward. Our findings provide a foundation and benchmark

for building embodied RL agents with multi-view perspectives.

CCS CONCEPTS
• Computing methodologies→ Artificial Intelligence, Machine
learning.

KEYWORDS
Embodied Agent, Object Navigation, Computer Vision, Deep Rein-

forcement Learning, Multi-View Reinforcement Learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CASCON ’21, Nov 22–26, 2021,
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Xiaotian Liu, Victoria Armstrong, Sara Nabil, and Christian Muise. 2021.

ExploringMulti-View Perspectives on Deep Reinforcement Learning Agents

for Embodied Object Navigation in Virtual Home Environments. In Proceed-
ings of CASCON ’21: CASCON X EVOKE (CASCON ’21). ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
An important area of artificial intelligence research is the use of

embodied agents that interact with the environment. While the

environment can be real or simulated, the basic premise remains the

same: the embodied agent is present in the environment and acts

within it, gaining knowledge of the world in which it resides. Em-

bodied agents perform three main types of navigation tasks: visual

exploration, visual navigation, and embodied Q&A [5]. The task of

visual navigation can be further decomposed in point navigation,

object navigation, navigation with priors, and vision-and-language

navigation [5]. We focus specifically on the task of object naviga-

tion, where the embodied agent is required to find a labeled object

in a new environment.

With the recent advancements in deep learning, deep reinforce-

ment learning techniques are being applied to embodied agents

for object navigation tasks [2]. Reinforcement learning (RL) agents

learn to discover objects in an environment by performing a se-

quence of actions that maximize the expected reward. Deep learning

based RL agents often require a tremendous amount of generated

samples, making them impractical in many real-life settings [19].

Thus, sample efficiency becomes an increasingly important issue

for embodied RL agents.

Traditionally, only a single perspective of the state space is passed

to the RL agent. However, drawing on more than one perspective

of the environment should add additional information for the agent

to act upon. Consider the example of driving a car - the driver’s

perspective shows immediate actions and obstacles, whereas road

maps provide information about the current location and the des-

tination. For embodied agents, it is often the case visual inputs

from multiple cameras are available. Thus RL agents should be

designed to process information from these different perspectives.

Very few works have tackled multi-view reinforcement learning

tasks. Recently, Li et al. proposed a framework for multi-view RL

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CASCON ’21, Nov 22–26, 2021,
Liu, Armstrong, Nabil, and Muise

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

via cross-view policy transfer [10]. Chen. et al. combination of mul-

tiple views from via different vantage points for robotics control [4].

As far as we are aware, there has not been any work that tackles

multi-view RL for embodied object navigation.

In this work, we want to investigate whether a deep RL agent

can effectively combine multiple visual inputs of an environment

for the object navigation task. We also want to benchmark the

multi-view agent against RL agents trained solely on the egocentric
or the allocentric perspective. We define egocentric as the first-

person perspective captured by a camera mounted the agent and

allocentric as a top-down view that captures the entire scene [8].

Our object navigation experiment are virtual home environments

that are rendered virtually using environment AI2-THOR [9]. We

task the agents with locating an object in a living room under

different levels of difficulty. We used the standard Deep Q-Learning

(DQN) agent based on the convolutional neural network (CNN)

[13]. To combine two different views, we constructed a dual input

CNN by concatenating the latent representation of two identical

CNN subnetworks. To keep network architecture consistent, each

of the CNN subnetworks is identical to the CNN used in single

perspective CNN.

Our experiments demonstrate that CNN-based DQN agents can

effectively capture information from both perspectives. While learn-

ing from a solely allocentric or egocentric perspective has different

advantages, combining both inputs yields a superior performance

to either individually. Our work makes two main contributions:

• First, we compare the performance of egocentric versus allo-

centric DQN agents for embodied object navigation.

• Secondly, we show that combining multiple visual inputs

in the latent space is advantageous for embodied deep RL

agents.

2 BACKGROUND
Our work involves aspects of deep RL, object navigation, and em-

bodied agent design. In this section, we outline the background

information for key concepts discussed in later sections.

2.1 Object Navigation
Most classic navigation methods focus on using geometric mea-

sures to find an optimal path to a goal. Object navigation is a subset

of the semantic navigation problem where an agent needs to dis-

cover objects through their relationships within an environment [5].

Object navigation requires both spatial and conceptual information.

Embodied agents and human beings store information differently.

The inner working of the human brain remains mostly a mystery.

However, the representation of both spatial and semantic informa-

tion appears to be entangled in the brain [22]. The key to object

navigation is to build a system that can bridge the gap between

spatial and semantic information [7]. In this work, we focus on how

to formulate object navigation as an RL problem in a virtual home

environment.

2.2 Perspective and Views
In spatial representations, how relationships between objects and

the viewer are defined provides different information encodings.

The egocentric perspective relates objects in the scene with the

agent itself [8]. In the allocentric perspective, object locations are

represented in terms of each other, independent of the agent’s

location [8]. Specifically relating to agents for object navigation,

the egocentric perspective is important as it encodes the immediate

actions available to the agent. Conversely, the allocentric view

provides a spatial mapping of the environment, and is more suitable

for long-term planning. In computer vision, state-spaces can be

represented from different vantage points. While the use of a single

vantage perspective is considered single-view, combining various

vantage points is called multi-view [10]. The use of multi-view

reinforcement learning has been explored in relation to DQNs in

the context of robot arm manipulation [4] and Atari games [10].

2.3 Deep Q-Networks
Deep Q-Networks (DQNs) are RL agents that approximate the op-

timal Q-Value function [15] using deep neural networks[13]. The

original DQN network was able to achieve super human level per-

formance in Atari 2600 games. To estimate the Q-Value function,

the DQN is trained using experience replay, which stores a series

of N previous transitions. The update equation for Q-Values (which

we build on later) is as follows:

𝑄 (𝑠𝑡 , 𝑎𝑡) ← 𝑄 (𝑠𝑡 , 𝑎𝑡) +𝛼 [𝑅𝑡+1 +𝛾𝑚𝑎𝑥𝑎𝑄 (𝑆𝑡+1, 𝑎) −𝑄 (𝑠𝑡 , 𝑎𝑡)] (1)

Since the conception of DQNs, their successes have been built

upon, and applied to a wide variety of problems across varying do-

mains. DQNs have been used in business for stock market portfolio

management [6], for cloud computing workflow management [17],

and in the energy sector for HVAC system balancing [1]. DQNs

have also been applied to the field of vision for unmanned aerial

vehicle (UAV) obstacle navigation in three dimensions [18] and

object navigation in indoor scenes [23].

2.4 AI2-THOR
We use AI2-THOR to setup our experiments. AI2-THOR is devel-

oped by the Allen Institute research for embodied agent research

[9]. It renders realistic home environments that can be used for vi-

sion based object navigation. AI2-THOR supports as various home

environments such as kitchen, living room, bedrooms and bath-

rooms. The agents can perform both discrete and continuous action

with the option of adding stochasticity. AI2-THOR is mostly used

for testing emobodied agents for tasks such as object navigation

and instruction following. See https://github.com/allenai/ai2thor.

3 PROBLEM STATEMENT
Embodied agents can gather information in a multi-modal and

multi-sensory fashion. Visual inputs from different perspectives

can be easily gathered throughmultiple cameras. For example, when

designing a home assistant robot, we can have camerasmounted in a

fixed location to observe the entire room and a mobile one the agent

itself. We call the fix-angle perspective the allocentric view and the

mobile perspective the egocentric view. The natural question arises

whether an embodied agent trained using a deep reinforcement

learning framework can take advantage of both information. Thus,

our experiments revolve around two search questions.

RQ1:What are the performance differences between an egocentric

RL agent and an allocentric RL agent.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Exploring Multi-View Perspectives on Deep Reinforcement Learning Agents for Embodied Object Navigation in Virtual Home Environments
CASCON ’21, Nov 22–26, 2021,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: DQN architecture used to approximate the Q-value function for both dual (top) and single (bottom) perspective.

RQ2: Can an RL agent take advantage of both egocentric and allo-

centric information from two separate visual inputs.

4 METHODOLOGY
We used a CNN-based DQN network to train our embodied agents.

The architecture is similar to [13] which uses a CNN DQN frame-

work for atari games. For the multi-view agent, we concatenated

the latent space of two CNNs before the final prediction layer. Our

agents are trained for object navigation tasks in the AI2-THOR

environment that renders the photo-realistic indoor scenes for em-

bodied agents. The performance of the agents is evaluated based on

both reward improvement rate and and the optimal policy reward.

The details are outlined in this section.

4.1 Single and Dual Input CNN
We use a CNN neural network to approximate our Q-Value function.

The input is a three-channel RGB image with dimensions 256 by 256.

We use three convolutional layers to downsample the image into a

latent representation. The first convolution layer has 32 channels

with a kernel size of 8 and a stride of 4. The second convolution

layer has 64 channels with a kernel size of 4 and a stride of 2. The

last layer has 32 channels with a kernel size of 3 and a stride of 2. We

then flatten this layer, and connect it to a fully connected linear layer

of dimension 512. The ReLU activation function was used for all

layers except the final output. The output layer has four dimensions

which represent Q-Values for MoveForward, MoveBackward,

TurnLeft, and TurnRight. We use this architecture for both the

egocentric and allocentric agents.

We use a similar architecture for our dual input network. The

dual input architecture has two separate single-channel CNNs to

downsample both images. However, we stack the latent representa-

tion of both single-channel CNNs together before passing to the

final layer. Thus, the network should weigh both input information

equally by default. We chose to keep the architectures of both net-

works as similar as possible to facilitate a comparison between the

information gained using a single-view compared to a multi-view.

4.2 Deep-Q Learning
We followed the standard Deep Q-learning framework as outlined

in [11]. In order to use our dual CNN, we modified the Q-learning

algorithm with our novel network architecture. Our method is

trained using raw images generated from the AI2-THOR. The idea

is to calculate the Q-value from given images directly using a deep

neural network. For each (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) tuple generated, we update
the Q-value with a learning rate 𝑎 = 0.5 using the Bellman Equation.

To update our sample independently, we implemented experience

replay with a Deque memory structure of size 5000. For every

10 steps, we sample a batch of 64 images to backpropagate our

neural network with a learning rate of 0.001. The agent acts in a

𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 policy with a decaying exploration rate. The randomness

of sampling ensures that updates are not correlated with the current

action thus avoiding local minima. A detailed description of our

Deep Q-learning algorithm is shown in Algorithm 1.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CASCON ’21, Nov 22–26, 2021,
Liu, Armstrong, Nabil, and Muise

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1: Deep Q-learning algorithm

1: Initialize weights with replay buffer D
2: repeat (for each episode)

3: for each step do
4: Observe state s𝑡 and select a𝑡 ∼ 𝜋 (a𝑡 , s𝑡)
5: Execute a𝑡 and observe next state s𝑡+1 and reward

r𝑡 = 𝑅(s𝑡 , a𝑡)
6: Store (s𝑡 , a𝑡 , r𝑡 , s𝑡+1) in replay buffer D
7: for each sample do
8: sample e𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) ∼ D
9: Target Q-value:

10: 𝑄∗ (𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾𝑄𝜃 (𝑠𝑡+1,max𝑎
′ 𝑄𝜃 (𝑠𝑡+1, 𝑎

′))
11: Gradient descent on 𝐿(𝑄∗ (𝑠𝑡 , 𝑎𝑡), 𝑄𝜃 (𝑠𝑡 , 𝑎𝑡))
12: until s is terminal

Figure 2: Easy Scenario, left, Hard Scenario, right

5 EXPERIMENTS
We designed three separate agents, each with a different view of

the environment. The egocentric agent takes the first-person view

of the environment, while the allocentric agent takes the top-down

view of the environment. These two agents use the sameCNN-based

DQN architecture. The dual-perspective agent uses our novel dual-

input CNN architecture. It takes both the allocentric and egocentric

images as input for policy learning.We evaluate the performances of

these three agents based on reward improvement rate and optimal

policy reward. Simple and hard tasks are evaluated separately.

We trained our agents for 100 episodes for the easy scenario and

200 episodes for the hard scenario. We conducted our experiment

on Ubuntu 20.04 with an Intel i7 CPU and an Nvidia RTX2070 8GB

GPU. Each episode takes approximately 5 minutes to train, with a

combined training time of 75 hours.

5.1 Task Setup
To answer our research questions, we set up an RL environment for

an embodied object navigation task. The objective of our RL agents

is to navigate and find an object in an unknown environment. We

chose a cardboard box as the target object and in a living-room

setting. To test our methods, we designed two scenarios to train

our RL agents. We call the first scenario the easy scenario where

the box is relatively close to the agent. The optimal policy only

requires 32 actions to reach the box. The agent needs to learn how

to turn and navigate to the box directly. The second scenario is the

hard scenario where the box is relatively difficult to discover. The

optimal policy for this scenario is 65 actions. The agent needs to

learn to navigate towards a target while avoiding collision with

obstacles. The top-down view of both scenarios can be seen in 2.

5.2 RL Settings
Our agent was trained in a 3D living room environment in AI2-

THOR. Since AI2-THOR does not have a native RL library, we

had to define and implement action space and reward functions

from scratch. The state of the environment is captured by both the

egocentric image and the allocentric image. Both images are a 256

by 256 RGB array generated through the THOR API. To simplify

our action space, we discretized our agent’s action space into four

types: MoveAhead, MoveBack, TurnLeft, and TurnRight. For

the two movement actions, we set the distance to 0.25m for each

step. For TurnLeft and TurnRight we set the rotation angle to

90°. Thus, each physical coordinate location in the environment

will have four pairs of images available to the agent.

We designed the reward function to encourage exploration while

avoiding obstacles. When our agent conducts a turning movement,

or the action MoveBack, the agent gets a reward of -1. This is

designed to discourage unnecessary movements by the agent. For

the MoveAhead action, we give the agent a neutral award of +0.

We designed it to encourage the agent to explore the environment

while moving constantly. When the agent has collided with the

wall or an obstacle during training, we penalize the agent -10. The

negative award is used to help the agent to recognize obstacles and

dead-ends. Finally, when the agent has found the target object, we

gave it a large +100 reward. We define the successful termination

condition as when the agent is 0.5m away from the target object

while facing the object directly. A budget of 1000 movements is

given to the agent. When this is exhausted without finding the

target object, we terminate the episode for a new start.

5.3 Evaluation Criteria
Our agents are evaluated based on two criteria: the reward im-
provement rate and the optimal policy reward. We define reward

improvement rate as the average number of episodes the agent

needs to achieve a particular reward. For example, it takes agent

one 20 episodes to achieve an average reward and 40 episodes for

agent two. We can say that agent one has a faster reward improve-

ment compared to agent two. The maximum reward in our setup

is 100, and we split the rewards by an interval of 20. The optimal

policy reward is the highest average reward for each agent given a

set number of training episodes. We use a moving average of size

five to smooth out our reward calculation.

6 RESULTS AND DISCUSSION
We compared average reward and episode length for all three agents

for each of the two settings. Table 1a and 1b shows the reward

improvement rate for each agent. Since episodic rewards depends

on number actions taken, thus we use a range of -60 to 60 with an

interval of 30 for the hard setting, and 0 to 60 with and integral

of 20 for the easy setting. The first row of the two tables shows

the reward interval, and the rest of the rows show the number of

episodes needed. Final rewards are listed in the last column. Figure

3a and 3b show a moving average reward for every 20 episodes

trained. These graphs demonstrate how each agent improves their

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Exploring Multi-View Perspectives on Deep Reinforcement Learning Agents for Embodied Object Navigation in Virtual Home Environments
CASCON ’21, Nov 22–26, 2021,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Reward Interval -60 -30 0 30 60 Final-Rwd

Ego-Episodes 84 102 109 133 NA 59.97

Allo-Episodes 103 111 118 132 167 67.58

Comb-Episodes 86 104 110 125 178 67.04

(a) Easy setting.

Reward Interval 0 20 40 60 Final-Rwd

Ego-Episodes 27 34 47 91 62.55

Allo-Episodes 23 30 41 64 71.94

Comb-Episodes 12 15 21 32 84.16

(b) Hard setting.

Table 1: Episodes required for reward.

policy over time. We run each setting 5 times and the average

rewards across them are used for comparison.

6.1 RQ1. Allocentric vs Egocentric Comparison
In the easy setting, allocentric agents seem to have a performance

advantage in both reward improvement rate and optimal rewards

comparing with egocentric agent. This setting is easy enoughwhere

both agents can achieve a reward of 40 within 50 episodes trained.

Overall the performances of both agents are comparable to another.

In the hard setting, the advantages of each agent become more ap-

parent. The egocentric agent has a faster reward improvement rate

than the allocentric agent in earlier episodes. It takes 84 episodes

for allocentric agents to have a reward higher than -60 while taking

103 episodes for the egocentric agent. However, this speed advan-

tage disappears when more episodes are trained. After 200 episodes,

the allocentric agent achieves an optimal reward of 67.58 compar-

ing to the egocentric agent, which achieves an optimal reward of

59.97. In addition, we qualitatively analyzed trajectories for each

agent. We believe that egocentric is better at avoiding collision with

obstacles such as chairs and tables, which gives a large negative

reward. Allocentric agents have complete information about the

map, thus, can obtain a better long-term policy. These results an-

swer our first research question regarding advantage of egocentric

versus allocentric agents.

6.2 RQ2. Multi-View Agent Performances
In the easy setting, the multi-view agent performs significantly

better than the other two agents. We believe this is due to the extra

information given to the multi-view agent, where it can locate its

current state more easily. The easy setting only requires a small

number of actions making the extra information much more useful.

In the hard setting, our result indicates that the multi-view RL agent

has the advantage of both networks. It has a similar early reward

improvement rate advantage as the egocentric agent while having

the same high long-term performance as the allocentric agent. The

multi-vew agent achieved reward above -60 in 84 episodes and

achieved a final reward of 67.04. Our results indicate that our dual

network architecture can effectively leverage information from both

perspectives. The latent concatenation in our dual CNN architecture

seems sufficient for the agent to utilize both perspectives without

additional priors. A qualitative analysis also shows that the multi-

view agent learns to avoid obstacles in the same manner as the

egocentric agent while achieving almost identical optimal reward

as the allocentric agent. These findings confirm our assumption that

an CNN based RL agent can combine information form multiple

perspectives.

7 RELATEDWORK
Most RL algorithms only use visual inputs from a single perspective.

Thus very few works have tackled multi-view RL problems and

their applications. Chen et al. created a model to approximate the

Q-values from 4 images of a robotic arm to control its movement

in the x, y, and z directions [4]. They demonstrated that multi-view

inputs can be used to improve learned policies in robotic control.

Li et al. examined multi-view reinforcement learning problems

by extending the partially observable Markov decision processes

(POMDPs) through cross-view policy transfer [10]. They showed

that this extension reduces sample complexity and computational

time using multi-views in video games such as Pong. Although

both works tackle different aspects of multi-view RL problems, we

are the first work that exams multi-view RL in embodied agents.

In addition, our work is the first one to empirically compare the

performance of multi-view DQN agents against agents trained

solely on egocentric or allocentric input.

We use object navigation problems to evaluate multi-view em-

bodied agents. Unlike our approach, works in this area mostly focus

on a single egocentric perspective as input for an agent. Wijmans

et al. [19] have used the end-to-end RL method to achieve state-of-

the-art in point-goal navigation. Parisotto et al. [14] demonstrated

that having a structured memory in RL agents helps with data ef-

ficiency. Using similar ideas, Tamar et.al [16] proposed the Value

Iteration Network to solve path planning problems on a local level.

Bhatti et al. [3] used a learned SLAM map to play Doom with RL

agents. However, a fixed size tensor is not the only way to store

memory. Wu et al. [20] used a generative model, inspired by Gener-

ative Adversarial Networks (GANs), to learn a latent representation

of the environment as a graph neural network. Similarly, Yang et

al. [21] uses a pre-trained graph neural network to learn object

relationships. Liu et al. [12] used a neural-symbolic approach to

conduct object navigation with a planner for high level reasoning

and neural networks for object recognition. In contrast with these

works, we are the first to focus on object navigation with multiple

visual modalities.

8 CONCLUSION AND FUTUREWORKS
In this work, we implemented and compared embodied deep RL

agents based on egocentric and allocentric visual input for the task

of object navigation. We also proposed a dual-input CNN architec-

ture that has the ability to capture both state-space perspectives

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CASCON ’21, Nov 22–26, 2021,
Liu, Armstrong, Nabil, and Muise

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Easy-Setting (b) Hard-Setting

Figure 3: Episode -vs- Average Rewards

via a combined latent. We discovered that egocentric visual inputs

are better for obstacle avoidance, thus lead to better early policy

learning. Allocentric agents can learn a better policy in the long

run due to the presence of complete state information. Our results

also demonstrate that our dual CNN architecture has the ability to

capture the most relevant information from each perspective for

task completion. The network captures the benefit of both perspec-

tives, ultimately resulting in greater rewards and shorter policy

convergence. We have verified our hypothesis that embodied deep

RL agents can be trained to capture information from multiple per-

spectives in a beneficial way. For future work, we would like to

extend our approach to continuous actions with stochastic control.

The added complexity yields a more realistic setting to account for

factors such as fault tolerance. In addition, we would also like to

use other types of multi-input architectures for data fusion. We

want to incorporate more sensory information such as distance and

sound into our embodied agent design.

REFERENCES
[1] Ki Uhn Ahn and Cheol Soo Park. 2020. Application of deep Q-networks for

model-free optimal control balancing between different HVAC systems. Science
and Technology for the Built Environment 26, 1 (2020), 61–74.

[2] Ramón Barber, Jonathan Crespo, Clara Gómez, Alejandra C Hernámdez, and

Marina Galli. 2018. Mobile robot navigation in indoor environments: Geometric,

topological, and semantic navigation. In Applications of Mobile Robots. Inte-
chOpen.

[3] Shehroze Bhatti, Alban Desmaison, Ondrej Miksik, Nantas Nardelli, and Philip

N. Siddharth. 2016. Playing Doom with SLAM-Augmented Deep Reinforcement

Learning.. In CoRP.
[4] Jun Chen, Tingzhu Bai, Xiangsheng Huang, Xian Guo, Jianing Yang, and Yuxing

Yao. 2017. Double-task deep q-learning with multiple views. In Proceedings of the
IEEE International Conference on Computer Vision Workshops. 1050–1058.

[5] Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan. 2021. A

Survey of Embodied AI: From Simulators to Research Tasks. CoRR abs/2103.04918

(2021). arXiv:2103.04918 https://arxiv.org/abs/2103.04918

[6] Ziming Gao, Yuan Gao, Yi Hu, Zhengyong Jiang, and Jionglong Su. 2020. Appli-

cation of deep q-network in portfolio management. In 2020 5th IEEE International
Conference on Big Data Analytics (ICBDA). IEEE, 268–275.

[7] Yuki Katsumata, Akira Taniguchi, Yoshinobu Hagiwara, and Tadahiro Taniguchi.

2019. Semantic Mapping Based on Spatial Concepts for GroundingWords Related

to Places in Daily Environments. In Frontiers in Robotics and AI.
[8] Roberta L Klatzky. 1998. Allocentric and egocentric spatial representations:

Definitions, distinctions, and interconnections. In Spatial cognition. Springer,
1–17.

[9] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro

Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. 2017. Ai2-

thor: An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474
(2017).

[10] Minne Li, Lisheng Wu, Haitham Bou Ammar, and Jun Wang. 2019. Multi-view

reinforcement learning. arXiv preprint arXiv:1910.08285 (2019).
[11] Ruishan Liu and James Zou. 2017. The Effects ofMemory Replay in Reinforcement

Learning. CoRR abs/1710.06574 (2017). arXiv:1710.06574 http://arxiv.org/abs/

1710.06574

[12] Xiaotian Liu and Christian Muise. 2021. A Neural-Symbolic Approach for Object

Navigation. In CVPR Embodied-AI Workshop.
[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari

with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602

http://arxiv.org/abs/1312.5602

[14] Emilio Parisotto and Ruslan Salakhutdinov. 2017. NeuralMap: StructuredMemory

for Deep Reinforcement Learning. In arXiv:1702.08360.
[15] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.

[16] Aviv Tamar, YI WU, Garrett Thomas, Sergey Levine, and Pieter Abbeel. 2017.

Value Iteration Networks. In NeurIPS.
[17] Yuandou Wang, Hang Liu, Wanbo Zheng, Yunni Xia, Yawen Li, Peng Chen,

Kunyin Guo, and Hong Xie. 2019. Multi-objective workflow scheduling with

deep-Q-network-based multi-agent reinforcement learning. IEEE Access 7 (2019),
39974–39982.

[18] ZhensongWei, Yu Jiang, Xishun Liao, Xuewei Qi, ZiranWang, GuoyuanWu, Peng

Hao, andMatthew Barth. 2020. End-to-End Vision-Based Adaptive Cruise Control

(ACC) Using Deep Reinforcement Learning. arXiv preprint arXiv:2001.09181
(2020).

[19] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,

Manolis Savva, and Dhruv Batra. 2020. DD-PPO: LEARNING NEAR-PERFECT

POINTGOAL NAVIGATORS FROM 2.5 BILLION FRAMES. In ICLR.
[20] Qiaoyun Wu, Dinesh Manocha, and Kai Xu Jun Wang. 2020. NeoNav: Improving

the Generalization of Visual Navigation via Generating Next Expected Observa-

tions. In AAAi.
[21] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi.

2019. Visual semantic navigation using scene priors. In ICLR.
[22] Eiling Yee, Michael N. Jones, and Ken McRae. 2018. Semantic Memory. In Psy-

chology Publications.
[23] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,

and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes using

deep reinforcement learning. In 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 3357–3364.

6

https://arxiv.org/abs/2103.04918
https://arxiv.org/abs/2103.04918
https://arxiv.org/abs/1710.06574
http://arxiv.org/abs/1710.06574
http://arxiv.org/abs/1710.06574
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

	Abstract
	1 Introduction
	2 Background
	2.1 Object Navigation
	2.2 Perspective and Views
	2.3 Deep Q-Networks
	2.4 AI2-THOR

	3 Problem Statement
	4 Methodology
	4.1 Single and Dual Input CNN
	4.2 Deep-Q Learning

	5 Experiments
	5.1 Task Setup
	5.2 RL Settings
	5.3 Evaluation Criteria

	6 Results and Discussion
	6.1 RQ1. Allocentric vs Egocentric Comparison
	6.2 RQ2. Multi-View Agent Performances

	7 Related Work
	8 Conclusion and Future Works
	References

