
The Generalizability of FOND Solutions in Uncertain Environments

Victoria Armstrong, Christian Muise
Queen’s University, Kingston, ON, Canada

{victoria.armstrong, christian.muise}@queensu.ca

Abstract

Logical regression has proven to be a powerful mechanism
for computing compact solutions to non-deterministic plan-
ning problems. However, the impact on the generality of the
solutions has been largely unstudied. We analyze the compact
solutions produced by a leading FOND planner, PRP, and de-
velop a logical encoding that represents all possible states that
the policy can handle. Through the use of a #-SAT solver, we
count the number of models that satisfy the logical encod-
ing (corresponding precisely to the states the policy is able
to handle), allowing us to quantify how the policy general-
izes beyond the reachable state space . We analyze the solu-
tion representation on seven standard FOND benchmarks and
compare the generality of these policies to the reachable state
space of the policy applied to the problem’s initial state. Our
work can be seen as a generalization of similar studies for
deterministic planning domains and clearly demonstrates the
broad generalizability of these compact representations.

1 Introduction
Non-deterministic planning problems present an interest-
ing challenge to planners, given the exponential growth of
state-action representations when enumerating possible out-
comes. Challenges arise both in plan representation and gen-
eration. Replanning approaches, while robust, can be costly
in both time and computational resources. Therefore, we aim
to avoid replanning during execution wherever possible. One
of the leading fully observable non-deterministic (FOND)
planners, PRP (Muise, McIlraith, and Beck 2012), addresses
these challenges by storing compact policies based on logi-
cal regression. However, the true nature of how general these
solutions are has thus far gone unstudied.

To address this, we create a logical encoding to represent
all states a policy produced by PRP is capable of handling.
We do this by extracting partial state-action pairs, as well
as any potential forbidden state-action pairs (both concepts
central to the operation of PRP). We consider only the por-
tions of the policy that can guarantee a goal may be reached.
From this encoding, we count the number of models, which
directly corresponds to the number of states that the policy is
able to handle, that is, how far the policy is able to generalize
beyond the reachable state space.

Our approach was evaluated using policies generated for
seven benchmarks. We compare our compact representation

to the number of reachable states from the policy. Overall,
we found that regression-enabled policies, such as those pro-
duced by PRP, enumerate larger state spaces in significantly
less time than the explicit methods representing complete
state-action pairs. The use of regression and the resulting
increase in the state space that we can apply the plan to, al-
lows us to avoid the need to replan during execution when
irrelevant changes to the world occur. Examples of this ben-
efit exist in the deterministic space with work by (Fritz and
McIlraith 2007) and (Muise, McIlraith, and Beck 2011). In
summary, our work offers the following contributions:

• A generalization of previous work in deterministic plan-
ning using logical regression to enumerate the number of
states a policy can handle.

• A demonstration of the broad generalizability (i.e., how
broadly applicable a solution is) of compact logical rep-
resentations in non-deterministic settings.

2 Preliminaries
Non-deterministic Planning
Many real-world problems, such as dialogue agents, are bet-
ter represented by FOND than a deterministic setting. The
unknown action outcomes require the planner to consider all
possible outcomes of a non-deterministic action. One of the
current state-of-the-art planners for FOND problems is PRP
(Muise, McIlraith, and Beck 2012). The success of PRP is
largely attributed to how it represents plans. PRP exploits
state relevance to produce a policy made up of partial state-
action pairs (in contrast to complete state-action pairs). Rel-
evance refers to partial states as a subset of the current state
that allows the agent to reach the goal. A PRP policy is a
mapping of a state to an action, that results in the agent even-
tually reaching the goal (Muise, McIlraith, and Beck 2012).

The policy contains partial state-action pairs computed
using logical regression. To regress a formula through an
action, we work backwards from the goal. We determine
that the formula immediately before the action is executed
must hold (Waldinger 1981), to guarantee the resulting for-
mula holds and achieves the goal. This can be repeated re-
cursively, working backwards from the goal, to determine
precisely which states are relevant for the remaining plan
to achieve the goal. Because of the focus on relevance, the
policy naturally generalizes beyond just the reachable state



space. The power of this generalization is precisely what we
want to investigate. Fritz et al and Muise et al (Muise, McIl-
raith, and Beck 2011; Fritz and McIlraith 2007) are primary
examples of the same investigation in the classical setting.

Following the notation of Muise, McIlraith, and Beck, we
define a state s as reachable by a given policy if the agent can
reach s following the policy. The set of all states reachable
by a policy is called the reachable state space. A policy can
be categorized as strong cyclic if the goal is reachable from
this state by following the policy. Conversely, a non-strong
cyclic policy does not carry this guarantee.

Propositional Logic & Model Counting
We will appeal to propositional logic in order to assess the
generality of the FOND policies. Logical representation al-
lows us to unambiguously define rules over propositions
to represent information. Propositions are declarative state-
ments that can take on a valuation of true or false. Using
logical operators, such as and (∧), or (∨), and not (¬), we
can build complex logical representations.

Once a logical formula has been built, we can determine
if the formula evaluates to true for different true/false val-
uations of each proposition. A model is a set of these truth
values assigned to each proposition where the formula eval-
uates to true. There may be more than one model for a given
formula, and we can use a #-SAT solver to count how many
different models exist. A #-SAT solver is a tool that takes a
logical encoding and assigns valuations to count the num-
ber of instances where the formula evaluates to true (Biere,
Heule, and van Maaren 2009).

3 Approach
In our approach, we draw on the policy produced by PRP
(Muise, McIlraith, and Beck 2012) for any given FOND
benchmark. The information contained in the policy cap-
tures the repeated regression backwards from the goal along
every path. We can use the policy and propositional logic
to build a logical encoding, allowing us to understand the
full number of states the policy is capable of handling be-
yond the reachable state space. For any given problem, the
produced PRP human-readable policy contains state-action
pairs. Lines 1 and 2 in Figure 1 is an example of these state-
action pairs. A series of forbidden state-action pairs (FSAPs)
are also specified in the policy, shown in Figure 2.

Some of the partial state-action pairs in the generated PRP
policy are labeled “strong cyclic (SC)”. You can see the la-
bels in lines 4 and 7 of Figure 1. This indication guaran-
tees that executing the policy from that point on will eventu-
ally reach the goal, which is a property of the PRP planner
(Muise, McIlraith, and Beck 2012). To take a conservative
view of what PRP solutions are capable of handling, we only
look at strong cyclic parts of the policy. For example, line
10 of Figure 1 includes the non-strong cyclic (NSC) marker
(i.e. executing from this point is not guaranteed to reach the
goal), so line 9 is omitted from the logical encoding. As dis-
cussed further in Section 4.2, excluding NSC actions leads to
an underestimate in our count of the number of states han-
dled by the policy. However, we are able to maintain the
guarantee that we will achieve the goal.

1 If holds: vehicle-at(l-1-3)

2 Execute: goal / SC / d=0

3

4 If holds: not-flattire()/vehicle-at(l-2-2)

5 Execute: move-car l-2-2 l-1-3 / SC / d=1

6

7 ...

8

9 If holds: not-flattire()/vehicle-at(l-1-1)

10 Execute: move-car l-1-1 l-2-1 / NSC / d=4

Figure 1: A portion of the human readable policy for Trian-
gle Tireworld Problem 1.

1 If holds: not-flattire()/vehicle-at(l-1-1)

2 Forbid: move-car l-1-1 l-1-2

Figure 2: An example FSAP from the human readable policy
for Triangle Tireworld Problem 1.

Parsing out the human-readable PRP policy, we convert
every partial state to a unique proposition. For each line,
we create a conjunction of partial states as propositions.
These conjunctions are stored in a dictionary with their cor-
responding action. This is the point where any NSC pairs
are discarded. Using the stored state-action information, we
build an encoding to represent an executable action.

An action is considered executable by our policy if and
only if the following two conditions hold:

1. At least one condition from the policy is true where the
condition was paired with the action.

2. None of the FSAPs associated with that action are cur-
rently true.

If an action is only triggered once, we only have a con-
junction to add to our theory. If an action is triggered by dif-
ferent conjunctions of states, we add each to our theory as a
conjunction. For example, assume Ci and Dj are both lists
of partial state conditions for action a at different parts of
the policy. In this case, we would take a disjunction of both
sets of condition conjunctions. This is shown in Formula 1
below. This notion can be extended to any action with a fi-
nite number of occurrences in the policy. This ensures that
condition (1) is satisfied in our theory.

(c1 ∧ c2 ∧ ... ∧ ci) ∨ (d1 ∧ d2 ∧ ... ∧ dj) (1)

To satisfy condition (2), we query our set of forbidden
state-actions pairs. If there are any FSAPs for the corre-
sponding action, we negate the disjunction of states and add
this to our theory. We build these clauses for every action
in the policy. These individual clauses are added to a list.
Continuing our example above, consider Fk to be the list of
fluents in an FSAP corresponding to our action a. We create
a conjunction with Formula 1 and the negated disjunction of
these fluents. This is shown in Formula 2:

((c1 ∧ ...∧ ci)∨ (d1 ∧ ...∧ dj))∧¬(f1 ∨ f2 ∨ ...∨ fk) (2)



Our final step is to create a disjunction of all clauses for
every action contained in the policy (i.e., “at least one ac-
tion executes”). Assume our policy contains a finite number
of actions ai. Given a sub-theory ti that encodes the condi-
tions under which action ai is executable, like in Formula
2, we can build our final logical encoding by taking the dis-
junction of each ti. The final result, T , shown in Formula
3, is a theory that encodes the total number of states for the
given policy. We can use any #-SAT solver to count the total
number of models, which corresponds to the total number of
states the policy can handle (i.e., has an executable action).

Note that while there may be some states with more than
one partial state-action pair that matches, our formula is con-
structed so that the propositions exclusively deal with the
fluents in the domain. Doing so effectively projects the the-
ory down to just the states handled by the policy.

T = (t1 ∨ t2 ∨ ... ∨ ti) (3)

4 Evaluation
We use the python nnf library to build our logical encod-
ing. Our state-action pairs are stored in a modified Python
dictionary that allows for duplicate keys. This is important
as the same action may be triggered by different partial
states. Model counting is performed using the #-SAT solver,
DSHARP (Muise et al. 2016) which produces an exact count
for the number of models that satisfy an encoding.

4.1 Experiments
We evaluated our approach on seven FOND benchmarks.
Table 1 summarizes the benchmarks used and the number
of problems. For each of the 505 problems, we create a log-
ical formula representing the total number of states the PRP
policy is capable of handling, as outlined in Section 2. We
count the number of models that satisfy the formula, as well
as the amount of time it took to count these models. We
compare our results to the size of the reachable state space
that is computed using PRP’s validator. While particulars of
this computation are not necessary to understand our results,
further details can be found in (Muise, McIlraith, and Beck
2012).

All experiments were conducted on a high-performance
Linux server running Ubuntu using an Intel Xeon Gold 5218
CPU. We apply a 10-minute timeout to both the validator
(i.e. reachable state space counting) script and model count-
ing for each problem. Memory was not restricted (the ma-
chine contains 32GB of available memory) and failures were
all due to timeouts.

4.2 Analysis
Any failures were noted during data collection and the
source of the error (either validator timeout, model counting
timeout, or both) are recorded in Table 1. The core analy-
sis was to investigate the model counts of the PRP policy
(corresponding to the state space handled by the solution)
and compare them to the reachable state space. We would
expect the policy to handle more states than the reachable

Domain # Probs Failures UsedValidator DSHARP
blocks-new 50 -1 -12 37
elevators 15 0 0 15
faults-new 190 0 0 190
first-new 95 -1 -7 87
forest-new 100 -30 -10 60
tri-tire 40 -36 0 4
zeno 15 -1 0 14
Totals 505 -69 -29 407

Table 1: Benchmarks with the total number of problems,
the number of cumulative failures for both the validator and
DSHARP , and the final amount from each benchmark used.
The final row includes the totals for each value across bench-
marks.

state space1, but the open question is by what margin – every
state handled by the general policy constitutes a strict gen-
eralization over the standard solution format of a complete
state-action mapping. The model counts grew too large to
analyze; indeed, in some cases, the number of models ex-
ceeded 1e+120. To combat these large numbers, we scaled
all model counts by log10.

5 Results
Our approach encodes a compact policy representation for
FOND in propositional logic, allowing us to draw a corre-
spondence between satisfying solutions and the total num-
ber of states that the policy is capable of handling. We found
that our approach represents far more states handled by the
policy than the total reachable state space, and further found
that this calculation can be readily made with a minimal time
overhead.

Of the 505 problems we evaluated, 407 (80.6%) were suc-
cessful. Success is defined as running without a timeout.
The individual benchmarks with the highest success rates
were faults-new and elevators where 100% of the
problems produced a valid model count. The worst overall
success rate was triangle-tireworld with only 10%
running successfully. These failures are a result of the reach-
able state spaces becoming too unwieldy to enumerate caus-
ing the validator to time out (though we could still count the
states handled by the policy). Table 1 summarizes the aggre-
gate results.

Out of the 407 successful problems, there were 345 in-
stances where the generalized model count was larger than
the reachable state space count. In the most extreme case,
the generalized model count demonstrated 2.56e+118 times
more states handled by the policy than the total reachable
state space. In the worst case, the generalized model count
was only 11 times larger. There were 62 instances where
the number of reachable states was greater than the num-
ber of states produced by the generalized model counts. In

1Because we focus on only the partial state-action pairs marked
strong cyclic, it is technically feasible for our conservative estimate
to wind up less than the reachable state space.



Figure 3: Number of generalized reachable states counted
with DSHARP compared to the number of reachable states
produced by the validator, excluding models containing
NSC actions.

all 62 cases, the policies contained an abundance of NSC
marked actions that were not included in the generalized
model. This means these model counts are a significant un-
derestimate of all the possible states handled fully by the
policy so that we maintain the guarantee that we achieve
the goal. If we relax this guarantee, we expect to see larger
numbers of handled states. Figure 3 visualizes the relation-
ship between the generalized states handled by the policy
compared to the reachable state space. Forest-new and
triangle-tireworld were omitted from this graph as
every problem either contained NSC actions, or timed out.

Out of the 505 runs, DSHARP failed only 29 times (5.7%)
of the time. This is less than half the failures from valida-
tor timeouts. Excluding the DSHARP failures, the average
length of time to count was 13.9 seconds.

These results demonstrate a drastic improvement in how
many states a compact policy for FOND can handle. Some-
what paradoxically, while the validator (i.e., enumerating all
of the reachable states) times out on several instances, build-
ing a theory through logical encoding of the partial state-
action pairs allows us to capture and count a far larger num-
ber of handled states.

6 Related Work
In the following sections on execution monitoring and
FOND plan representation, we situate our work within the
existing literature.

6.1 Execution Monitoring
Execution monitoring helps to identify and resolve discrep-
ancies in the plan, which typically involves replanning. Re-
planning can be computationally expensive, especially in the
case of FOND problems where the state-space can grow ex-
ponentially. Muise used regression to efficiently compute the
minimal set of conditions for a partial order plan validity, al-

lowing the plan to continue to execute as long as the plan re-
mains valid (Muise 2014; Muise, McIlraith, and Beck 2011).
This notion has also been extended into the temporal do-
main with TPOPEXEC (Muise, Beck, and McIlraith 2013).
Predating this work, Fritz and McIlraith harness regression
to measure plan optimality during execution, focusing solely
on deterministic problems (Fritz and McIlraith 2007).

6.2 FOND Plan Representation
A common way to represent FOND plans is using com-
plete state-action mappings. Such is the case for Fu et al.’s
work that addresses the large number of states that the plan-
ner must handle by using a goal alternative heuristic and
state reuse (Fu et al. 2011). Similarly, Kuter et al. use an
NDP-based algorithm and conjunctive abstraction to com-
press the state space (Kuter et al. 2008). Mattmüller et al.
use a controller that uses nodes corresponding to complete
states using LAO* search that is guided by a pattern database
heuristic (Mattmüller et al. 2010). Similarly, Geffner and
Geffner produce a compact FOND plan representation us-
ing a controller whose nodes can correspond to potentially
many states (Geffner and Geffner 2018).

Contrasting the above, the leading FOND planner, PRP,
uses a partial state plan representation (Muise, McIlraith,
and Beck 2012). Their planner harnesses the fact that typ-
ically only a small subset of the state is necessary to achieve
the goal (Muise, McIlraith, and Beck 2012). Using a weak
plan the authors regress backwards from the goal to just be-
fore action a, based on work done by Fritz and McIlraith
in the non-deterministic setting. This regressed state is used
as the partial state for the state-action pair (Muise, McIl-
raith, and Beck 2012). While we chose to use PRP in this
work, a similar generalization would be demonstrated using
the GRENDEL planner given that it also uses a similar par-
tial state plan representation (Ramirez and Sardina 2014).

7 Conclusion
Modern FOND planners generate compact policies that have
a natural property of generalizing beyond the reachable state
space of any given instance. Until now, the impact of this
generalization has gone unstudied. We provide the first sys-
tematic analysis of just how much generalization occurs in
these FOND policies. We have also shown that measuring
the generalization of a policy can be computed in a fraction
of the time compared to traditional methods that enumerate
the state space. An implication of these results is that this
FOND plan representation can help us to avoid replanning
when irrelevant changes occur in the world. One possible
extension would be to determine a way to count more of
the non-strong cyclic pairs to get more accurate measures of
model counts. Ultimately, our work provides concrete evi-
dence of the broad generalizability of compact representa-
tions in uncertain environments.

8 Acknowledgments
The authors gratefully acknowledge funding from the Bank
of Nova Scotia, as well as joint funding from the Province
of Ontario and Queen’s University.



References
Biere, A.; Heule, M.; and van Maaren, H. 2009. Handbook
of satisfiability, volume 185. IOS press.
Fritz, C.; and McIlraith, S. A. 2007. Monitoring Plan Opti-
mality During Execution. In ICAPS, 144–151.
Fu, J.; Ng, V.; Bastani, F.; and Yen, I.-L. 2011. Simple and
fast strong cyclic planning for fully-observable nondeter-
ministic planning problems. In Twenty-Second International
Joint Conference on Artificial Intelligence.
Geffner, T.; and Geffner, H. 2018. Compact policies for fully
observable non-deterministic planning as SAT. In Twenty-
Eighth International Conference on Automated Planning
and Scheduling.
Kuter, U.; Nau, D. S.; Reisner, E.; and Goldman, R. P. 2008.
Using Classical Planners to Solve Nondeterministic Plan-
ning Problems. In Rintanen, J.; Nebel, B.; Beck, J. C.; and
Hansen, E. A., eds., Proceedings of the Eighteenth Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2008, Sydney, Australia, September 14-18, 2008,
190–197. AAAI.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern database heuristics for fully observable nonde-
terministic planning. In Twentieth International Conference
on Automated Planning and Scheduling.
Muise, C. 2014. Exploiting Relevance to Improve Ro-
bustness and Flexibility in Plan Generation and Execution.
Ph.D. thesis, University of Toronto.
Muise, C.; McIlraith, S.; and Beck, C. 2012. Improved
non-deterministic planning by exploiting state relevance. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 22, 172–180.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2011. Moni-
toring the execution of partial-order plans via regression. In
Twenty-Second International Joint Conference on Artificial
Intelligence.
Muise, C.; McIlraith, S. A.; Beck, J. C.; and Hsu, E.
2016. DSHARP: Fast d-DNNF Compilation with sharpSAT
(Amended Version). In AAAI-16 Workshop on Beyond NP.
Muise, C. J.; Beck, J. C.; and McIlraith, S. A. 2013. Flexible
Execution of Partial Order Plans With Temporal Constraints.
In IJCAI, 2328–2335.
Ramirez, M.; and Sardina, S. 2014. Directed fixed-point
regression-based planning for non-deterministic domains. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 24, 235–243.
Waldinger, R. 1981. Achieving several goals simultane-
ously. In Readings in artificial intelligence, 250–271. El-
sevier.


