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Abstract

With the rapid development of complex machine learning models, there is uncertainty

on how these models truly work. Their black-box nature restricts experts from eval-

uating models solely on standard numerical metrics, which may result in a model

performing seemingly well on a dataset but for the wrong reasons. It is particularly

critical to have transparency in medical image analysis due to the importance those

decisions have. This is because health care practitioners are hesitant to trust machines

when there is no clear reason for the machine to use the appropriate logical steps for

a decision, and most importantly, human life is at stake. Regulatory bodies, such as

the U.S. Federal and Drug Administration, have recently started pushing guidelines

to make AI medical devices more transparent so that they are safer to use.

To address this challenge, many researchers have proposed interpretability meth-

ods to generate explanations for the behavior of machine learning models. One

popular interpretability method is Local Interpretable Model-agnostic Explanations

(LIME), which can explain any black-box model trained on any type of data. Al-

though LIME is a powerful tool, the explanations generated by it depend on how

the hyper-parameters of the algorithm are set. If little care is given to the hyper-

parameters, the resulting explanations can be meaningless.

In this thesis, we first address the impact of a core component in LIME – weights.
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The weights impact the quality and variability of explanations generated by LIME.

Since weights are determined by the distance metric, we compare the explanations

of LIME for three cases; when weights are calculated using (1) an unnormalized

distance metric, (2) a normalized distance metric (LIME authors default), and (3)

set uniformly to a value of one. Through theoretical analysis and experimentation

with different data sets and models, we demonstrate that using the unnormalized dis-

tance metric results in poor explanations, whereas the normalized metric and uniform

weights give comparable high-quality explanations. We, therefore, propose ULIME

(Uniform LIME), a variant of LIME that forgoes the weighted notion of locality by

setting all weights to one. Our motivation behind ULIME is the simplification of the

existing LIME algorithm by removing the weighting step, and consequently, removal

of the distance metric hyper-parameter that is strongly coupled with explanation

quality.

Secondly, we address the impact of superpixelization techniques on explanation

intuitiveness – a method used to partition the image for explanation purposes. We

develop a domain-specific superpixelization method that aids in generating more in-

tuitive explanations and emphasize our results on two medical imaging datasets. Al-

though LIME can be configured for any type of input and model, for this thesis, we

restrict our investigation to image classifiers.

Our contributions aim to improve the current state-of-the-art LIME for image

interpretability. We simplify LIME by removing the weighting step, reducing the

possibility of error due to the distance hyper-parameter, and introducing the concept

of domain-specific superpixelization verified by a radiologist. Taken together, our

approach improves the quality of explanations, and, thereby, provides a mechanism
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for physicians and patients to place greater trust in the results of ML models.
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Chapter 1

Introduction

The ability of a model to make predictions by learning has automated the traditional

process of manually formulating rules from data. However, unlike the clear under-

standing, one had of manual logic, Machine Learning (ML) models are more difficult

to understand. This difficulty grows with the complexity of the model, and at some

point, it becomes unreasonable to find the meaning behind the many parameters in-

volved in making a decision. At that point, we can only treat the model as a black

box, i.e. algorithms that cannot be explained due to their inherent complexity, and

blindly trust the computer to use the right information for decision making. Although

blind trust is appropriate for some applications, medical settings have implications on

human health and are therefore governed by regulatory bodies including the United

States Food and Drug Administration (FDA) and Health Canada. Any bias in pre-

diction can lead to catastrophic consequences, and because biases are usually difficult

to locate, it may be the case that patients receive suboptimal treatment before the

bias is detected. Even when the bias is found, the high complexity of current ML

models only makes it more difficult to fix immediately. Therefore, regulatory bodies
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such as the FDA have started incorporating regulations for AI systems in their frame-

work, and soon AI manufacturers will be required to ensure their medical devices are

transparent and safe to use [17].

One might then consider making less complex models for the same task. Presently,

there is a trade-off between performance and complexity. As the machine learning

model becomes more complex, the machine is able to capture more sophisticated

behavior [22]. For example, in certain applications, a simple machine learning al-

gorithm such as linear regression is not suitable for classification compared to the

more complex convolution neural network (CNN) [24]. Going deeper, a single layer

CNN might not be as effective as using a multi-layer residual network. One could

then opt for decreasing the overall complexity to improve interpretability, however,

decreasing a model’s complexity is undesirable for many critical tasks where the need

for performance or accuracy is high. Therefore, intentionally decreasing complexity

is not always viable.

An alternative is to understand how a machine learning model works and/or what

input features it uses to discriminate between different types of input. This would

boost the end user’s trust [20], since they could better understand the circumstances

leading to a model’s decision. In the clinical setting, a physician may more readily

accept the machine’s decision if the machine presents reasons as to why it thought a

certain way, and those reasons are comparable to what the physician uses. For exam-

ple, if the presence of a disease is exhibited by an aberration on the surface of a tissue,

the physician would expect the machine to use those regions as an explanation for the

disease prediction. To make machine learning models explainable, researchers have

recently started working on certain methods, called interpretability methods. Many
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types of interpretability methods have been introduced in the past decade, and we fo-

cus on one of the most popular recent ones called Local Interpretable Model-Agnostic

Explanations (LIME) [34]. LIME helps deep learning practitioners explain any ma-

chine learning classifier by highlighting the important input features responsible for

a prediction. For example, the authors of LIME trained a model on biased images

of wolves and huskies and showed that for predicting images containing wolves, the

model was considering the snowy background rather than the animal. This caused

the model to confuse a husky with a wolf when an image of a husky in the snow

was shown. Furthermore, ten out of twenty-seven human subjects trusted the “bad”

model before examining the explanations, and after, the number reduced to three

[34]. Therefore, without the aid of an interpretability method, it would be difficult to

catch biases early on due to the impracticality of sifting through thousands of images

used for training the model.

The significance of interpreting a model is evident, but this gives rise to another

important question. Can we trust the explanations generated by an interpretability

method? If the explanations are inconsistent or do not capture the true behavior of

a model, this not only defeats the purpose of having an explanation but is counter-

productive to establishing user trust. Even worse, if the user ends up trusting an

erroneous explanation, this can lead to unnecessary wastage of resources trying to

fix a perfectly fine model [36]. Therefore, along with establishing trust in a model,

establishing trust in the explanations generated by an explanation method is equally

important.
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1.1 Problem

The explanations generated by an explanation method need to be correct to properly

understand a model. The term “correct” can encompass many definitions, but before

that, we briefly introduce the concept of superpixels so that the definition of the term

is more clear. Superpixels are a preset collection of pixel groups. Each pixel group

contains pixels of similar intensity. To illustrate superpixels, Figure 1.1 shows a fish

image divided into 16 superpixels. LIME indicates the superpixels responsible for the

model prediction, e.g. in this case, LIME might point to the superpixels containing

the fish’s body. A correct explanation needs to (1) be consistent for that input, (i.e.

if the input and model are kept fixed, the explanations that show which superpixels

are important should not differ after every new iteration of the explaining method)

and (2) highlight only the superpixels responsible for a models decision. If the ex-

planations differ in every iteration of the explaining method, or the superpixels are

poorly designed such that individual superpixels contain both essential and unessen-

tial regions (hence we cannot know for sure which region inside the superpixel was

actually important for the model), this will result in uncertainty in the correctness of

the explanations.

Bringing this concept to the context of LIME, although LIME is certainly capable

of generating reasonable explanations, we observed variations in LIME explanations

in each run when certain distance metrics were used as hyper-parameters. These

variations were in the form of varying importance of superpixels of an image. For

example, if LIME was being used for identifying which superpixels of an image were

responsible for a model’s prediction, and the distance metric was not chosen carefully,

in one run, LIME would point to one superpixel of the image but in another run, it
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(a) (b) (c) (d)

Figure 1.1: The fish image is divided into 16 superpixels. Variations in the LIME
explanations are apparent in the heatmaps when the L2 distance is used for calculating
the weights.

would point to a different superpixel of the image. We show an example in Figure

1.1. Therefore, the explanations were dependent on the choice of the distance metric.

Secondly, the choice of superpixelization also affected the quality of explanations.

If the image was segmented randomly, some superpixels of the image would be high-

lighted as important only because they contained a small fraction of the image respon-

sible for the prediction even though the majority of the superpixel was insignificant.

These two problems raise a potential roadblock to explaining ML models in health-

care, given the sensitive nature of the application.

1.2 Objective

This thesis has two primary objectives. The first objective is to investigate the impact

of a core component in the operation of LIME – the weighting step (determined by the

choice of the distance metric) – on the explanations generated. We contrast this with

our approach to disregard weights entirely in LIME, called ULIME (Uniform LIME),

for the purposes of making LIME simpler and less error-prone. The second objective

is to investigate the effect of superpixelization on the explanations generated by deep
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(a) (b) (c)

Figure 1.2: (a): Superpixelized image of a Labrador. (b)-(c): Heatmaps of the expla-
nations using L2 LIME -vs- ULIME averaged across 10 LIME runs, 300 perturbations
per run. Because of the L2 distance, the heatmaps of L2 LIME (b) are more dispersed
compared to the heatmaps of ULIME (c).

learning models trained on medical imaging datasets. To examine the explanations,

we collaborate with a Radiologist from Memorial Sloan Kettering Cancer Center (New

York, NY, USA). These two objectives build upon our main motivation of bridging

the gap of trust between intelligent machines and patients/physicians.

1.3 Summary of our Approach and Findings

In our experiments, we used a variety of image-based benchmarks and ran LIME with

two traditional distance configurations as well as our augmented version ULIME which

does not rely on any distance configuration. We found that our proposed approach,

ULIME, provided highly stable results comparable with the one distance configuration

(used by LIME authors), and does so without the added complexity of a user-specified

distance hyper-parameter.

We further evaluated all methods on two real-world radiology imaging datasets,

the liver, and the pancreatic tumor datasets, and our observations on previous datasets
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still upheld. However, on these medical imaging datasets, the standard superpixeliza-

tion technique failed to focus on the proper parts of the input image, leading to sub-par

explanations. To remedy this, we implemented a domain-specific superpixelization

for medical tumors, leading to better insights into what the model was looking for in

an image.

1.4 Contributions

We have three key contributions to improve the reliability and understanding of LIME:

• A modification of LIME for image classifiers called ULIME, based on uniformly

setting all weights to one is proposed. This is done to make LIME simpler and

less error-prone since the choice of distance metric can significantly impact the

explanation quality.

• The performance of ULIME is extensively tested on different models and data

sets. We compare ULIME with two other versions of LIME (including one used

by the authors). Our empirical and qualitative metrics show that the weighted

locality is not necessary for the application of LIME on image classifiers.

• We introduce a domain-specific superpixelization technique for medical images

and show the improvement in explanation intuitiveness compared to the stan-

dard method. The improvement in explanations is verified by a radiologist.

1.5 Organization of Thesis

Chapter 2 explains the inner workings of LIME and goes over existing literature re-

lated to our work. Chapter 3 discusses the datasets and models used, our hypothesis
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on the impact of weight values on LIME explanations, and experimentation to test

our hypothesis. The experimentation and results section in Chapter 4 demonstrates

the impact of using our modified LIME on various public datasets. In Chapter 5,

we explore our modified LIME in the medical domain and introduce a novel super-

pixelization technique that improves the intuitiveness of the explanations. Chapter

6 concludes with useful insights we gained from our results and questions for future

research.
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Chapter 2

Literature Review

2.1 What are interpretability methods?

The term interpretability is not rigorously defined, however many authors have at-

tempted to contribute to the definition of the term. Doshi-Valez [13] defines in-

terpretability as the “ability to explain or to present in understandable terms to a

human.” Similar to the previous definition, Miller [29] defines interpretability as “the

degree to which a human can understand the cause of a decision”. From these two def-

initions, we realize the purpose of interpretability; to enhance human understanding

of why a machine learning model reached a certain prediction. Note that although the

term interpretability is used interchangeably with explainability, there is a subtle dif-

ference between both. Explainability focuses on the internal processes of a model, for

instance, why a certain set of weight values give better accuracy. Another term cor-

related with explainability is algorithm transparency. Algorithm transparency means

how the algorithm creates a model using the data, i.e. for Convolution Neural Net-

works, the algorithm learns various filters in each layer [30]. The more transparent a

machine learning algorithm is, the more explainable it will be. Interpretability, on the
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other hand, can identify reasons for a model’s behavior but that does not necessarily

entail understanding the internals of the model [25]. In this thesis, we will use both

terms interchangeably, however, LIME is precisely an interpretability method.

2.2 Interpretability Methods for Image Models

There are many different types of interpretability methods, however, the goal of all

methods is identical, i.e. to explain a machine learning model’s working. Some

interpretability methods involve visualizing the internals of a model such as using

deconvolution neural networks [47], observing images that are optimized to stimulate

filters [32], and creating and visualizing filters that fire on specific object parts [48].

Other methods are attribution based and they classify pixels that either positively

and/or negatively influence a prediction such as GRAD-CAM [38], Grad-CAM++

[9], Score-CAM [44], Ablation-CAM [12], and Eigen-CAM [31]. Finally, there are

other methods that perturb the input using different techniques and observe how

those changes affect the output, therefore creating a causal relationship between the

input and output. Such methods include SHAP (SHapley Additive exPlanations) [27],

LIME [34], and one that focuses on designingmeaningful perturbations for creating an

interpretation of a black box model [16]. Perturbation-based methods usually involve

running the black-box model multiple times on perturbed samples of the input to

find the prediction accuracy. Samples that result in lower accuracy generally indicate

a lack of the presence of the object being predicted. Since only the input needs to

be modified, they are much easier to implement and are more intuitive to individuals

who have no prior background in machine learning.
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2.3 Why interpretability methods in healthcare?

AI is gaining momentum in the healthcare sector as a means to speed up disease di-

agnosis, assist clinicians in decision making, outperform human capability in certain

tasks [3], and finally reduce cost and resources required to deliver quality care. How-

ever, even with the rapid success of AI technology, there is still widespread skepticism

for its implementation in medical applications. Unlike humans, machines cannot be

held accountable for any wrongdoing and are only lightly regulated. Additionally,

modern AI is highly complex and easily influenced by data biases. This includes

racial, ethnic, and gender bias issues that regulatory bodies such as the FDA still

struggle to overcome. There has not been any formal understanding of the relation-

ship between the weights involved in the decision-making processing. This is also

impractical given the large number of weights involved in some models. Therefore,

if any progress is to be achieved in the healthcare sector, time and effort will be re-

quired to design and improve methods that explain the reasoning behind a machine’s

decision.

From a clinicians’ perspective [41], AI models should be explainable so that they

can be used to justify a decision. This justification should be backed by proper medical

context, and if the model does fall short of accuracy, the under-performance should

be explained. If a proper justification is provided, this will boost the clinician’s trust

in the model, since they already trust the underlying justifications proven through

years of medical science research. The clinicians also express the need for the model

to repeatedly perform well in the diagnosis of a disease for continuous usage, i.e.

explanations should indicate consistency for a similar type of input data.

Google recently conducted an experiment [5] across eleven clinics in Thailand to
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detect diabetic retinopathy (DR) from patient eye images. They observed that the

quality of eye images varied significantly between clinics. Some clinics had a dedicated

room they would turn dark to enlarge the pupil before taking a picture, whereas other

clinics took pictures in lit rooms, leading to reduced image quality. The deep learning

model was only trained on high-quality images resulting in performance issues when

the nurses tried to feed in dark or blurry images. The bad performance of the model

on blurry images led nurses to believe they could concatenate two good halves of the

same patient to create a complete image of the retina, but deep learning models were

not trained to handle composite images, therefore the performance did not improve.

The nurses were not at fault because they did not understand how the model really

worked.

From the patients’ perspective, Cadario et al. [7] reports that patients were gen-

erally hesitant to use AI for their health checkups because they did not understand

what AI was, and believed that only medical doctors could perform the job properly.

Similarly, in another study [26], researchers found that patients were less likely to

trust AI because they thought their diseases were unique to them, and a standard

algorithm was incapable of understanding their circumstances. They were more will-

ing to consult a physician even if the risk involved was greater than taking the aid

of a machine. Recently, a study [35] was carried out in the span of 5 months where

the authors investigated patient views on AI in healthcare. They received positive

responses from the participants, however, those responses were contingent on the

prior that AI had been well tested and evaluated before deployment to the public.

In all three cases, an interpretability method was needed to show patients that AI

can complement a human decision, and in the future, even replace doctors for certain
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tasks.

2.4 LIME Definitions

Since the field of explainability is nascent, all methods are equally pervasive in the

research community. Therefore, amongst the many methods that we could have

explored, we choose to research one popular method, LIME. In this section, we detail

the working of LIME, these are important terms in the discussion of LIME: local,

global, model agnostic, and model-specific:

Local explanation methods are only faithful around a particular prediction and

therefore cannot be generalized for the entire model. In order to generate local ex-

planations for an instance, a model is trained on a subset of the data acquired by

zooming into the region that surrounds the instance.

Global explanation methods, on the other hand, explain a prediction by examining

the whole model. This ensures that the explanation is consistent with the entire data

the model has been trained on. However, sometimes the decision boundary of the

model is complex making it difficult to extract an explanation.

Model-agnostic explanation methods are independent of the model that needs to

be explained. They are capable of identifying the reason behind a particular pre-

diction across different types of models since they do not need access to the model’s

internals. The model-agnostic approach involves fitting an interpretable model on the

input features and output predictions regardless of the complexity of the underlying

mechanism in the model. Additionally, independent explanations give the flexibil-

ity of explaining the model in a variety of ways. The explanation for a prediction

presented to a doctor can conveniently be set to differ from the one presented to a
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statistician.

Model-specific explanation methods are methods that are coupled with the weights

and architecture of a model. Therefore they depend on a particular model to explain

its working. Due to this constraint, they are not as portable as model-agnostic meth-

ods [8], although some model-specific methods can work across models of a similar

class such as Grad-CAMS that primarily work on CNN’s regardless of the CNN ar-

chitecture.

LIME Specifics

For an instance x that needs to be explained, where x can be a tabular data point,

text, or an image, the first step is to convert x from its original space z ∈ Rd, to x′,

the space of the interpretable model z′ ∈ {0, 1}d
′
.

Multiple perturbations p′i are generated around x′ in the interpretable space. In

tabular LIME, the perturbations are random points, whereas in textual and image

LIME, the perturbations are randomly initialized binary arrays. The elements of

the binary array indicate the presence or absence of parts of the instance x in the

original space. In the case of x being text, each perturbation is a random inclusion

and exclusion of words, whereas in the case for x being an image, x is first segmented

into N superpixels, where a superpixel is a small portion of an image, and then the

superpixels are randomly included and excluded.

The black box classification values are obtained for each perturbation in the orig-

inal space. The perturbation and associated classification values are used for training

a weighted interpretable model taken from a class g ∈ G of interpretable models. The

interpretable model can be any linear model. In the linear model, the input features
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are the perturbations and the labels are the classification values. The distance, D,

between the instance x′ (binary array of all ones) and the perturbation p′i is used

to calculate the weight, wi, for a particular perturbation. σ is the width of the lo-

cal region, i.e. the size of the region considered to explain an instance. Greater σ

will decrease the locality of the explanation. The distance metric D is treated as a

hyper-parameter. Therefore, it can be substituted with any metric such as the Cosine

distance, the L1, the L2, etc.

wi = exp(−D(x′, p′i)
2/σ2) (2.1)

Perturbations closer to x′ are assigned larger weights, so that the model is locally

faithful. The loss function is the weighted squared difference between the black box

f , classification values f(pi), in the original space and the interpretable model g ∈ G,

prediction values g(p′i), in the interpretable space for all perturbations.

L(f, g, w) =
N∑
i=1

wi(f(pi)− g(p′i))
2 (2.2)

Once trained, each coefficient of the interpretable model g ∈ G indicates the

importance of an input feature. Algorithm 1 shows the implementation of LIME.

2.5 LIME Stability

David Alvarez-Melis et al. [2] performed robustness tests on various interpretability

methods. Their goal was to study how slight changes in the input affected the ex-

planations. The authors found that out of all interpretability methods, LIME was

the least robust method. A stability analysis was also carried out by [14] on text
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Algorithm 1 LIME

1: Input Perturbations

2: Output Interpretable Model g

3: for pert in Perturbations do
4: Weights.append(WeightEq(Distance(allOnes, pert)))
5: end for
6: for pert in Perturbations do
7: Labels.append(BlackBox(OriginalSpace(pert)))
8: end for
9: Interpretable Model g = LinearModel(Weights, Perturbations, Labels)
10: return Interpretable Model g

data, and out of six local model agnostic interpretability methods, LIME was the

least stable.

One of the reasons for explanation instability is the perturbation step [30, 4,

46, 45] that involves random sampling of perturbations around the instance to be

explained. To solve this problem, the authors [46] decided to forgo perturbations

in their implementation of LIME, called DLIME, and instead use the training data.

They first clustered similar data together and then used the k-nearest neighbors

algorithm to find the cluster of data points from the training set most similar to

an instance that needed to be explained. Since the clusters had the same data for

every LIME run, the explanations were constant. Although this approach solved the

problem of the variable explanation, three separate problems arose. Firstly, the data

set size had to be large enough to accommodate clusters suitably sized for training an

interpretable model. Secondly, even if a large data set was available, it might be the

case that clusters similar to the test instance were not available in the data. Finally, if

the black-box model was overfitting the training data, this can cause the interpretable

model to explain a new instance based on the classification values of training data
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the black-box model had already memorized, leading to incorrect explanations.

Beyond perturbations, some authors suggested that the weighting process also

leads to explanation instability. The authors of ALIME [45] replaced the weighting

method with an autoencoder that calculated distances in the latent space and showed

that ALIME was able to achieve higher stability compared to LIME. However, the

autoencoder needs to first be trained on the training data. This can lead to other

challenges if the data set is either very large or unavailable due to privacy reasons

such as health datasets involving patient confidentiality.

The authors of C-LIME [1] also used weight values of one for tabular LIME, only

after they changed the method of generating perturbations from random to Gaussian

distribution. They specifically stated that since they’ve changed to Gaussian distri-

bution, the samples are already assured to have close proximity to the instance that

needed explaining. In our work, we show that regardless of how far an image pertur-

bation is (i.e. regardless of the distribution), weight values of one are comparable to

weight values computed using normalized distance metrics.

An improvement in stability was also observed using a Bayesian version of LIME,

BayLIME [49]. BayLIME used prior beliefs to improve stability, however, the con-

straint not only lies in the usage of resources for obtaining prior beliefs but also

making sure the prior beliefs are derived from appropriate sources.

Finally, it is crucial to stress that C-LIME, ALIME, and DLIME have only been

applied to tabular data so far. Therefore, our work is separate because, we explore

the image version of LIME, which has an entirely different interpretable space. We

only cite these authors for the reported variance and modification in weight values.
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2.6 LIME Explanation Metrics

Generating explanations for the black box is not enough: the explanations need

to be evaluated to verify that they correctly explain the black-box model. For this

purpose different metrics have been introduced. LEAF (Local Explanation evAluation

Framework) focuses on five metrics for tabular LIME [4]:

• Conciseness: Measures the number of non-zero weights required to explain an

instance x. The smaller the value, the more easier and intuitive the explanation

is to understand.

• Local fidelity: Measures how well the interpretable model g ∈ G approximates

the prediction of the black box model for an instance x.

• Local concordance: An amalgamation of local fidelity and conciseness. It

measures local fidelity under the constraint of conciseness.

• Reiteration similarity: Uses the Jaccard Index to measure the similarity of

features between two or more interpretable models for the same instance x.

• Prescriptivity: Measures how well an explanation can be used to induce

changes in the instance x in a certain direction leading to new output pre-

dictions.

Visani et al. [43] proposed two metrics - VSI (Variable Stability Index) and CSI

(Coefficient Stability Index). They first called LIME r times on an instance and

then checked the (1) similarity of the features (VSI) comparable to the reiteration

similarity metric discussed earlier and (2) similarity of the coefficient value for the
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same variables (CSI) between each pair of interpretable models. For stability, both

metrics need to be high.

Yin et al. [45] used mean standard deviation to measure change in the coeffi-

cient values across 10 LIME runs for an instance x. Greater changes in the values

corresponded to less stable explanations.

The LnO method, originally named MoRF (Most Relevant First), was proposed

by [37] where they first placed a grid on the image, each box sized 9x9, and then iter-

atively removed the boxes based on importance. Using this technique, they observed

the AOPC (Area Under the MoRF Perturbation Curve) to evaluate the quality of

different heat mapping techniques. Based on heatmap quality, they were also able to

assess the deep neural network performance. A similar method, termed as deletion

metric, was also used by Zhao et al. [49] to evaluate explanation quality.

2.7 Experimentation Notation

For each image i ∈ I belonging to dataset I, we first segment i into N superpixels,

where N depends on the image and the segmentation algorithm. We then run LIME

r = 10 times on perturbation quantity p ∈ P , where P is the set of perturbation

quantities we use in our experiments, e.g. in our experiments, the set contains 12

perturbation quantities P = {10, 50, 100,200, 300, 500, 700, 1000, 1500, 2000, 2500,

3000}, and the p perturbations are randomly selected in each run. This gives us

r ∗ |P | explanations per image i, each explanation having N coefficients. We run our

experiments three times for each dataset, once for L2 LIME, once for Cosine LIME,

and once for ULIME. This means that |I| ∗ |P | ∗ r explanations are generated by

L2 LIME, Cosine LIME, and ULIME. In our experiments, we use three metrics, one
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qualitative; heatmaps, and two quantitative; LnO and the combined variance.

2.8 Experimentation Metrics

2.8.1 Heatmaps

Heatmaps are a data visualization technique that represents values as colors. The

intensity of the color indicates the magnitude of the value. Visualizing values with

heatmaps makes it easier for users to capture information in the data. When the

interpretable model is trained, every coefficient has a certain value that specifies the

importance of the superpixel it is associated with. The sum of the coefficients can

vary, and do not necessarily sum to one. Therefore, to compare the explanations

between LIME/ULIME runs, coefficients are normalized between 0 and 1 in each

explanation by deducting the minimum coefficient value and then dividing by the

difference between the maximum coefficient value and the minimum coefficient value.

Once normalized, heatmaps are used to visualize the explanations of L2 LIME, Cosine

LIME, and ULIME. Figure 2.1 shows the heatmaps of explanations generated by

ULIME explaining why a black box model predicted brain tumor. We use the Viridis

colormap where the bright yellow color is closer to 1 and the dark purple color is

closer to 0.

2.8.2 Leave n Out (LnO)

In LnO, instead of placing a grid as done by [37] (originally named MoRF (Most

Relevant First)), we find the set of black-box classification values for an explanation

by removing k=1 to N superpixels of an image instance one at a time, without

replacement, and then passing the image through the black box model each time.
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Image Heatmap Image Heatmap

Figure 2.1: Heatmaps visually explain why ULIME predicted brain tumor for each
image.

k=1 is the most important superpixel indicated by the highest coefficient value of the

interpretable model. Starting from the whole image with zero superpixels removed all

the way to an empty image, we observe a decreasing trend in accuracy as k increases.

The intuition is that if the top superpixels are truly discriminating features in the

image, the removal of superpixels should result in a quicker accuracy decline. Figure

2.2 shows the LnO for 10 explanations generated by running L2 LIME, Cosine LIME,

and ULIME 10 times on ImageNet animal images at 500 perturbations. As can be

seen, our ULIME is almost identical to Cosine LIME and focuses on more important

superpixels. Therefore the accuracy decline is much quicker when those are removed

compared to L2 LIME. Variations in the L2 LIME’s explanations can also be observed

from the more dispersed LnO’s.

There have been some concerns regarding the use of the LnO method. [21] pointed

out that the decrease in accuracy may be either due to loss of information or by the

change in distribution and instead proposed removing superpixels and then retraining

(ROAR). The end result was the same, i.e. a decrease in accuracy was observed but
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the decrease was less steep. We believe that the loss of information is the main cause

since LIME fundamentally works by training an interpretable model on perturbations

of the image. If distribution change was a major issue, we would not expect LIME to

work for images at all. Secondly, we reverse the LnO method by removing the least

important superpixels first and note that the accuracy is not affected until the removal

of the most important superpixel. [50] raises the concern that both approaches (MoRF

and ROAR) are unable to work in the scenario that two superpixels are equally

important in an image. This is because the removal of the first superpixel does not

impact the accuracy, therefore the first superpixel will be considered unimportant by

both methods. We agree with them and point out that we are not using LnO for the

purpose of finding the most important superpixel. Rather, LnO is used to calculate the

difference between the accuracy decrease of LIME and ULIME after the importance

of features has been identified by LIME and ULIME.

For each dataset, we acquire |I| ∗ |P | ∗ r LnO values for L2 LIME LL2, Cosine

LIME LCos, and ULIME LU . Each element in L is a list of accuracies from k=1 to N.

In order for the explanations of ULIME to be superior to L2 LIME, and comparable

to Cosine LIME, the difference LU −LL2 should be positive indicating that LU shows

a faster decrease in accuracy than LL2 and the difference between LU − LCos should

be near zero indicating that both explanations are similar. Since we are dealing

with entire datasets, we investigate two aggregate measures, Average Difference, and

Minimum Difference.

In Average Difference, we compute the average LnO values of the explanations,

L′
L2 for L2 LIME, L′

Cos for Cosine LIME, and L′
U for ULIME explanations, using

Algorithm 2. In Algorithm 2, line 3 goes through all the images of the dataset, line
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Algorithm 2 LnO Average

1: Input L

2: Output La

3: for i = 1 to len(Dataset I) do
4: for j = 1 to len(Perturbations P ) do
5: for r = 1 to runs do
6: Lsum = Lsum + L(i,j,r) (element-wise list addition)
7: end for
8: Lp.append(Lsum/runs) (element-wise list division)
9: end for
10: La.append(Lp)
11: end for
12: return La

4 goes through all perturbation quantities for each image, and line 5 goes through

all runs per perturbation quantity. Line 6 sums up all the LnO value arrays (k=1 to

N elements per array) element-wise across all runs and line 8 finds the element-wise

average. The average is appended for all perturbations and then appended for all

images.



2.8. EXPERIMENTATION METRICS 24

Image L2 LIME Cosine LIME ULIME

Figure 2.2: ImageNet Animals: LnO Comparison of L2 LIME, Cosine LIME and
ULIME explanations for images of animals across 10 runs. LnO’s of Cosine LIME
and ULIME are similar, and better than L2 LIME.

We then find the difference between the averaged LnO values of L2 LIME/Cosine
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Algorithm 3 LnO Average Difference

1: Input La, L′
a

2: Output Ld

3: for i = 1 to len(Dataset I) do
4: for j = 1 to len(Perturbations P ) do
5: Ldiff = La(i,j) − L′

a(i,j)

6: Lid.append(Ldiff )
7: end for
8: Ld.append(Lid)
9: end for
10: return Ld

Algorithm 4 LnO Average Difference Per Perturbation

1: Input Ld

2: Output Lv

3: for j = 1 to len(Perturbations P ) do
4: sum = 0
5: for i = 1 to len(Dataset I) do
6: sum = sum+ SUM(Ld(i,j))
7: end for
8: mean = sum/len(Dataset I)
9: Lv.append(mean)
10: end for
11: return Lv

LIME and Cosine LIME/ULIME, Ld = La − L′
a, where La = L′

L2/Cos and L′
a = L′

U

using Algorithm 3. Again line 3 goes through all the images and line 4 goes through

all perturbation quantities. In line 5, we find the difference between the averaged LnO

across 10 runs. The difference is also a list that is appended for each perturbation

in line 6, and then for each image in line 8. Finally, we calculate the single average

value, Lv, for each perturbation across the whole dataset using Algorithm 4.

In Minimum Difference, instead of taking the average, we find the minimum LnO

values, L(min)L2 for L2 LIME, L(min)Cos for Cosine LIME, and L(min)U for ULIME
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explanations and compute the difference Ld = Lm − L′
m, where Lm = L(min)L2/Cos

and L′
m = L(min)U . We observe a positive value when the minimum LnO value of

ULIME is subtracted from L2 LIME, meaning that on average, ULIME is better

than L2 LIME in generating the best explanation. The minimum difference between

ULIME and Cosine LIME is close to zero, showing that both methods are comparable.

2.8.3 Combined Variance (CV)

The purpose of calculating the combined variance is to find out how much the explana-

tions vary between the LIME runs. First the variance for each normalized coefficient,

Ck (with k=1 to N ), is calculated across the r L2, Cosine, and ULIME runs per

perturbation quantity using Equation 2.3. Ck is the mean of a particular coefficient

k across the r runs per perturbation quantity:

V ar(Ck) =

∑r
j=1(Ckj − Ck)

2

N
(2.3)

The combined variance for dependent variables is calculated using Equation 2.4

[6] by adding the sum of variances for each Ck with the sum of co-variances between

pairs of Ck:

V ar(C) =
N∑
j=1

V ar(Cj) + 2 ∗
∑
j<k

Cov(Ck, Cj) (2.4)

The dependent version of combined variance is necessary since the coefficients are

dependent on one another, i.e. if one coefficient is important, the others will be less
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so. A similar metric has been used by [45], where instead of finding the combined

variance, they used the mean standard deviation.

For generalizing across a whole dataset, the combined variance is averaged across

all images for each perturbation quantity p ∈ P just like we did for the LnO calcula-

tion.
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Chapter 3

Impact of Weights on LIME

3.1 Impact of the Distance Metric on Weights

The goal of this chapter is to investigate the impact of weight values on LIME expla-

nations, and the effect of different distance metrics on the weight values. As discussed

in the literature, the weights are calculated using Equation 2.1. In the weights equa-

tion, a major problem arises when the distance metric used to calculate distances

between the original image and the perturbations is not normalized, i.e., the distance

can go to infinity as the dissimilarity increases. This is exactly the case with the

L2 distance metric used in L2 LIME. Since the domain of L2 is d ∈ [0,∞), and the

values of the weights are calculated using an exponential function, therefore the val-

ues exponentially approach zero with slight increases in the distance. Even though

the authors of LIME use the exponential function to keep weights between [0, 1],

the extremely small values of weights end up negatively influencing the quality and

variability of explanations. When we normalize L2 or use any other distance metric

between d ∈ [0, 1], the minimum value a weight can acquire is 1.13e-7 only when

distance is a maximum of 1 which is rare. On average, the distance stays at 0.5
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leaving weight values around 0.018. Below, we show an example of how Cosine and

L2 distance metrics affect the weight values. The distance is calculated between an

image with all superpixels ON, with perturbations of the images P1, P2, and P3.

Image = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

P1 = [0, 0, 1, 1, 1, 1, 1, 1, 1, 1] Cos = 0.11 WCos = 0.91, L2 = 1.4 WL2 = 1e− 7

P2 = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1] Cos = 0.23 WCos = 0.67, L2 = 2 WL2 = 1e− 14

P3 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1] Cos = 0.37 WCos = 0.34, L2 = 2.4 WL2 = 1e−21

As can be seen, when the perturbations get more dissimilar, the L2 values shoot

beyond one, making the weights extremely small. This does not happen with Cosine

(or any other metric) that limits the distance to 1. In the next section, we theoretically

explore why lower weight values negatively affect the explanations, and if weights are

really necessary for LIME image.

3.2 The Theory Behind LIME

The intuition of LIME is very simple, and so is the underlying math. In LIME, the

goal is to train a simpler model, such as a linear model, to predict the predictions

of the underlying black-box model that needs to be explained. However, unlike the

image input fed into the black-box model, the linear model learns from binary vectors

(the perturbations) with superpixels either ON or OFF as features X and the black

box prediction values for those perturbations as labels y. Ultimately, LIME ends up

fitting a loss function on the data, but before that, the data has to be preprocessed.
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Preprocessing depends on the weight values.

In the preprocessing stage, available in sklearn library’s linear model fit function,

two operations are applied to the X features and y labels, mean centering (also known

as zero centering) and weight rescaling. The purpose of mean centering is to shift the

data so that the mean lies at zero, thereby equalizing the influence of all features.

This is done by subtracting the features of each data point in X and y in Equation

3.2 with the weighted mean of the entire feature column shown in Equation 3.1 (the

equation for y is the same). This gives us X ′ and y′. N is the number of features, i.e.

the number of superpixels.

meanj =

∑samples
i=1 xijwi∑samples
i=1 wi

for j = 1, 2, ...N (3.1)

X ′ =

samples∑
i=1

xij −meanj for j = 1, 2, ...N (3.2)

The purpose of rescaling is to apply the influence of weights. This is done by first

taking the square root of the weights. The square rooted weight values are placed

in the diagonal of a sparse diagonal matrix, and a dot product is taken between the

resulting matrix and the features X ′ and labels y′. This gives us X ′
r and y′r. We pass

X ′
r and y′r, our preprocessed data, to a least-squares function.

X ′
r = sparsediagonal(

√
(weights)) ·X ′ (3.3)

Inside the loss function of the linear model, such as the one for Linear Regression

used in this thesis, the least-squares function is calculated using Equation 3.4 where

X is an m ∗ n matrix and y is a m ∗ 1 matrix. The goal is to find the vector c
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by minimizing the sum of squared differences (Xc − y)2 between the predicted and

the original labels. The smaller the difference, the better the regression line fit on

the data. From 3.4, we derive a matrix equation to calculate the coefficients using

Equation 3.5.

Xc = y (3.4)

XTXc = XTy

(XTX)−1XTXc = (XTX)−1XTy

c = (XTX)−1XTy

(3.5)

3.3 Weight Influence on LIME

Since throughout the data preprocessing step and the loss function, products are

calculated between different variables, this leads to larger variance in the coefficient

values of the trained linear model when using the L2 distance for weights. This is

because the weights vary significantly in negative powers of 10 with a slight change

in perturbations, as shown in the example above. This, in turn, influence the values

of X ′
r and y′r. Therefore, the explanations (i.e. coefficients) end up being different

for the same instance, black-box model, and LIME settings, because the random

perturbations strongly influence the weights. To illustrate variation between expla-

nations, Figure 3.1 (a) shows the superpixelization of the photocopier image. This

image was fed to an Inception-V3 model pre-trained on the ImageNet dataset and

the model correctly predicted it to be a photocopier. (b) and (c) illustrates heatmaps

for explanations of two L2 LIME runs using 100 perturbations. In explanation (b),
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(a) (b) (c)

(d)

Figure 3.1: (a) Segmented image of a photocopier. (b)-(c) Heat maps for two expla-
nations generated by two L2 LIME runs, 100 perturbations per run. (d) LnO value
graphs for the two explanations. Since the explanation in (b) does not focus on the
photocopier, its LnO takes longer to decline compared to the LnO of explanation in
(c).

the most important superpixel is at the right corner of the image but in explanation

(c), the most important superpixel is part of the left corner of the photocopier. We

can clearly see a difference (i.e variation) between explanations, even though all we

did was rerun L2 LIME on the same image. Similarly, the LnO’s also differ for both

explanations. Figure 3.1 (d) shows the LnO values graphed for the two L2 LIME

explanations. We see that for the second LIME, removing a smaller number of su-

perpixels leads to a quicker decline. Therefore we classify the second explanation to

be better than the first. We generally note that the LnO values are related to the
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quality of explanations. If the explanations do not prioritize important superpixels,

as seen in the heatmap (b) where instead of focusing on the photocopier, the most

important superpixel focuses on a corner. the LnO values take longer to decline, as

seen in LnO graph (d) for LIME Run 1.

When L2 was replaced with cosine distance, the random perturbations had a

smaller influence on the weights. Therefore the weights were better stabilized leading

to lesser explanation variation between multiple cosine LIME runs.

3.3.1 Impact of LIME Perturbations

Many authors have identified the cause of variable explanations to be the random per-

turbation step. In the perturbation step, perturbed samples are randomly generated

around the instance that needs to be explained and an interpretable model is trained

on those samples as input features where the labels are the black box classification

values for each sample. Since the perturbations are random, this could potentially

cause variations in the explanations. To investigate this, we fixed the number of per-

turbations and ran L2 LIME, Cosine LIME, and ULIME multiple times on an input

image, randomly generating perturbations on each run. We noticed that for Cosine

and ULIME, the randomness of perturbations had little impact on the stability of

the coefficient values if the perturbation quantity was kept reasonably large. This

was not the case for L2 LIME. Due to the L2 distance, we noticed high variations

between the explanations for different numbers of perturbations while everything else

was kept the same, i.e. the input image, LIME settings, and underlying black-box

model. In those variations, some explanations did not even highlight the important

features responsible for the model’s prediction.



3.3. WEIGHT INFLUENCE ON LIME 34

In an attempt to reduce variations, we slowly incremented the perturbation quan-

tity, rerunning L2 LIME, Cosine LIME, and ULIME multiple times after each incre-

ment. Increasing perturbations resulted in more consistent explanations across mul-

tiple Cosine LIME and ULIME runs but, again, not for L2 LIME. For both Cosine

LIME and ULIME, beyond a certain number of perturbations (on average 500), the

explanations were consistent between runs regardless of how randomly each pertur-

bation was chosen. Therefore we agree with the premise that random perturbations

are responsible for initial variance. However, we find this issue insignificant for LIME

image beyond a certain number of perturbations, because (1) the underlying image

being perturbed is the same, and (2) the linear model has seen enough perturbation

permutations for that image to generate consistent coefficients. Finally, we point out

that 500 perturbations are enough for stable explanations when the number of super-

pixels is kept around 25 (as done in our experiments). Increasing the superpixels will

require more perturbations for stabler explanations. We leave the topic of superpixel

quantity and its relation to explanation stability for future research.

3.3.2 Impact of LIME Weights

We then explored the step after perturbations, the weighting step. The L2 distance is

used to measure similarity. It is calculated in the interpretable space, i.e. between the

binary array of the perturbations and the instance. The greater the difference, the

smaller the weight assigned to the perturbation, since the perturbation is supposed

to be less similar to the instance making it less local. Initially, we were convinced

that this method failed to capture the similarity between the original image and the

perturbed images for two reasons.
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(a) (b) (c)

Figure 3.2: (a): Ice cream image segmented into 24 superpixels. Pretrained Incep-
tionV3 predicts the image 99% ice cream. (b): Removal of 5 superpixels leads to a
6% prediction. (c): Removal of 19 superpixels maintains 99% prediction.

Firstly, if the perturbation had many zeros but the zeroed superpixels did not

contain the discriminating features, the distance would be greater therefore this per-

turbation would be assigned a smaller weight even though it is more similar to the

instance. This is illustrated in Figure 3.2. In the Figure, the ice cream image has been

segmented into 24 superpixels. The distance of the third image was greater than the

second since more superpixels have been zeroed out, however, to the model, the third

image was more similar to the first in terms of the actual object it is trying to predict.

Hence, the actual object’s size and location in the image space were disregarded when

performing calculations in a binary space.

Secondly, the area of superpixels was overlooked in the interpretable space. If a

perturbation had many zeroed superpixels, but they only covered a small portion of

the image, the distance between the original instance and the perturbation would be

greater compared to a perturbation having only one zeroed superpixel that covered

most of the image. Again, this problem was similar to the first and was a direct

consequence of using binary space to calculate distances.
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However, even though both reasons were logically sound, we observed that in

Cosine LIME and ULIME, the linear model still learned the proper coefficients from

the binary vectors. This opened up two intuitions. Either, on average, the number of

superpixels excluded did indicate the loss of similarity, hence assigning lower weights

was reasonable, OR, the linear model was sufficiently learning from the perturbations

and black box prediction values alone, and therefore, weights were unnecessary.

There have been prior mathematical analyses of LIME from a theoretic perspective

by Garreau [18], [28] and [19] however the objective of those papers is to explore the

current implementation of LIME with no intention to investigate how changes in

the weighting step impact the performance of LIME. The first two papers focus on

tabular LIME but as noted in the conclusion of [28], image LIME is more complex

than tabular LIME. In the case of tabular data, dissimilarity can be calculated in the

Euclidean space whereas, for Image LIME, we show that the euclidean L2 distance

fails to generate good explanations. In the third paper, the authors explicitly state

that there is no principled way of choosing kernel width σ, as also done by authors

of [49]. In our observations, we did however note that only for L2 LIME, the value

of σ depended on the number of superpixels used to segment the input image. For a

higher number of superpixels, the value of σ also needed to be increased so that the

weights in the weight Equation 2.1 did not end up becoming zero.

3.4 Our Modification: ULIME

Rather than impose a weighted view of locality on the perturbations, we propose

ULIME where we set all weights uniformly to one and let the interpretable model

learn from perturbations as features and the class accuracy as labels. Since the linear
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model will eventually learn which features are important, and which are not, based

on the magnitude of class accuracy alone, we hypothesize that it is unnecessary to

enforce any extra weights.

When we changed the weights to one, we observed that the explanations generated

by ULIME were comparable to Cosine LIME. This is because the values of X ′
r and y′r

for both Cosine LIME and ULIME were similar hence, the coefficient values calculated

using Equation 3.5, for all the images tested on, were also similar. Therefore, for

image LIME, we concluded that the weighting step was not really necessary. Adding

weight calculations only made the algorithm more complex and error-prone due to

an extra distance hyper-parameter (i.e. choosing the wrong distance metric such as

the L2 resulted in poorer explanations). Note that removing the weighting step did

not really change the computation time, since the running of the black box model on

all the perturbations was still the main bottleneck of the algorithm. An interesting

problem for future research could be to find quicker ways to generate perturbations

and corresponding labels to decrease LIME computation time.

Figure 3.3 shows a comparison between 3 L2 LIME, Cosine LIME, and ULIME

runs for the same input image, same black-box model, and for 500 perturbations. In

this case, we’ve trained our custom CNN model on the MedNIST dataset.
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Method Image Heatmap 1 Heatmap 2 Heatmap 3

L2 LIME

Cosine LIME

ULIME

L2 LIME

Cosine LIME

ULIME

Figure 3.3: Explanation variation comparison between L2 LIME, Cosine LIME, and
ULIME for a model trained on MedNIST data. In this case, the model is predicting
a hand X-Ray. Less variance is observed in the explanations of Cosine LIME and
ULIME (which are also very similar) compared to the explanations of L2 LIME.

The images indicate hand X-Rays. It can be seen that LIME L2 explanations

vary much more than ULIME or Cosine LIME. Both Cosine LIME and ULIME are

very similar.
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Chapter 4

Experimentation and Results

4.1 Dataset

We used five image datasets, two private datasets, and three publicly available datasets

to evaluate our methodology. Out of the five datasets, two datasets were non-medical,

ImageNet [11] and CIFAR-10 [23], and three datasets were medical, MedNIST [15],

Liver Tumor dataset, and the Pancreatic Tumor dataset. We will detail the last two

datasets in the next chapter. ImageNet has over 14 million images with an average

size of 469x387 belonging to 1000 different classes organized according to the Word-

Net hierarchy. CIFAR-10 has 60,000 images of size 32x32 belonging to 10 classes,

6000 images per class and MedNIST has 58,954 images of size 64x64 belonging to six

classes; 10000 in AbdomenCT, 8954 in BreastMRI, 10000 in ChestCT, 10000 in Chest

X-Ray (CXR), 10000 in Hand and 10000 in HeadCT gathered from multiple sources

- from TCIA, the RSNA Bone Age Challenge, and the NIH Chest X-ray dataset.
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Figure 4.1: Our custom CNN model trained on the MedNIST dataset.

4.2 Experiments

We took advantage of publicly available pre-trained models for ImageNet and CIFAR-

10. We imported the pre-trained version of Inception-v3 [40], trained on ImageNet

images of size 224x224, from the Torchvision library and pre-trained version of VGG-

16 [39], trained on CIFAR-10 images from an open-source library [33]. For MedNIST,

we trained our own custom model separately on both datasets, resizing images to

224x224, and achieved 93% test accuracy. Figure 4.1 shows the architecture of our

custom CNN model. Each convolution is followed by a batch-norm and max-pooling

layer which has not been shown in the image.

Our goal was to apply L2 LIME, Cosine LIME, and ULIME on all datasets.

The purpose of applying L2 LIME was to show the impracticality of using the L2

distance for calculating weights. We then showed that using a distance metric that

normalizes distances between [0, 1], such as the cosine distance, improved the quality

and lessened variability of explanations. Finally, we showed that setting weights

to one gave explanations that were equal in quality to explanations obtained using

normalized distances, therefore concluding that weights were unnecessary for LIME

images. For Inception-v3, we used 100 images belonging to the first 100 ImageNet
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classes, one image per class. For VGG-16, we used 150 images belonging to the 10

CIFAR-10 classes, 15 images per class. For our custom models, we used 120 images,

20 per class for MedNIST. All images were selected randomly.

The quickshift segmentation algorithm [42] was used to superpixelize all images.

The parameters of the algorithm; ratio, the width of Gaussian kernel, and distance

cut-off was fixed for each data set given in table 4.1.

Dataset Ratio Gaussian Kernel Distance cut-off

ImageNet 0.2 6 200
CIFAR-10 0.5 1 50
MedNIST 0.1 5 100
Pancreas 0.1 6 100
Liver 0.1 6 100

Table 4.1: Parameters for the Quickshift Algorithm.

We chose these values after testing on multiple images, with the difference in

values likely resulting from the difference in image sizes of different datasets. The

width of the local region was set to σ = 0.25, a value set by the authors of LIME for

images.

In our experiments, we set the number of runs per perturbation to r=10 and our

perturbations quantities to contain 12 perturbations P = {10, 50, 100,200, 300, 500,

700, 1000, 1500, 2000, 2500, 3000}. Due to computational resources, we limit the

perturbation quantity to 3000 per image. The coefficients of the explanations were

normalized and used to plot heatmaps, calculate LnO’s and combined variance. Even

though we observed little influence of random perturbations on the explanations, we

still fixed a seed value of 123 so that, 1. our results were reproducible, and 2. the

perturbations were fixed across all runs for all three LIME versions.
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Experiments were run on a Windows 10 Intel Core-i5 9th generation PC hav-

ing a 6GB NVIDIA GeForce GTX 1660 GPU and Google Colab Pro environment

having a 16GB NVIDIA P100 GPU. Jupyter Lab was used for all code written

in Python version 3.7.7. The LIME algorithm was taken from the author’s offi-

cial GitHub page: https://github.com/marcotcr/lime. Our code can be found here:

https://github.com/ansariminhaj/ULIME

4.3 Results

4.3.1 Comparison of Heatmaps

Heatmaps were plotted for the explanations of images belonging to each dataset.

The heatmaps showed that L2 LIME had inconsistent explanations and that both

ULIME and LIME Cosine explanations stabilized at the same number of perturba-

tions. Therefore, with the help of heatmaps, we visually justified the equivalence of

ULIME and Cosine LIME.

Figure 4.2 shows the heatmaps of the explanations generated by Cosine LIME

(top row (a)-(c)), ULIME (middle row (a)-(c)), and L2 LIME (bottom row (a)-(c))

for all perturbation quantity P taken from a single run. Each heatmap represents a

unique p ∈ P in ascending order up to the last column, i.e. 3000 perturbations. It can

be visually observed that the heatmaps for explanations generated by ULIME and

Cosine stabilize at the same time (in the first 300 perturbations for all four images)

in contrast to L2 LIME (does not stabilize even at 3000 perturbations for three out

of four images).
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(a)

(b)

(c)

Figure 4.2: For each image (a) Chest X-ray, (b) Eagle and (c) Fish, the top row is
for Cosine LIME, the middle row is for ULIME and the bottom row is for L2 LIME.
From the left, (a-c) start with the segmented image followed by heatmaps for each
explanation per perturbation quantity P .

4.3.2 Comparison of LnO

The LnO of both ULIME and Cosine LIME explanations declined at the same rate,

whereas the LnO of L2 LIME took more time and was also more fluctuating. In other

words, both ULIME and Cosine LIME did an equal job capturing the most important

parts of the input image. Figure 4.3 (a)-(c) shows the LnO values of 10 explanations

of Cosine LIME, ULIME, and L2 LIME. These explanations were obtained by running

each LIME version 10 times on the images in Figure 4.2 at 500 perturbations per run.
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(a) Chest X-ray

(b) Eagle

(c) Fish

Figure 4.3: The LnO’s across 10 runs at 500 perturbations for the (a) Chest X-ray,
(b) Eagle and (c) Fish images shown in Figure 4.2. From the left, the first column
shows LnO’s for Cosine LIME, the middle column shows LnO’s for ULIME, and the
rightmost column shows LnO’s for L2 LIME.

To generalize our observations across entire datasets, Figure 4.4 shows both dif-

ferences, La −L′
a (Average Difference) and Lm −L′

m (Minimum Difference), between

the LnO’s of Cosine LIME and ULIME and the LnO’s of L2 LIME and ULIME. As

can be seen, the difference between Cosine LIME and ULIME is near zero for both

differences showing that both techniques are similar. For the difference between L2

LIME and ULIME, the graph is all positive for the average difference indicating that

on average, the LnO of explanations generated by ULIME decline quicker compared

to the ones generated by L2 LIME. In the case of minimum difference, the difference
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is either positive or insignificantly negative. The lower values for initial perturbations

may be due to the high variance in the explanations for those perturbations, which

is observable in our heatmaps.

4.3.3 Comparison of Variance

The combined variance of both ULIME and Cosine LIME explanations were compa-

rable. Therefore, both ULIME and Cosine LIME generated consistent explanations

(a) (b)

(c) (d)

Figure 4.4: (a) Minimum difference between LnO’s of L2 LIME and ULIME. (b)
Average difference between LnO’s of L2 LIME and ULIME. (c) Minimum difference
between LnO’s of Cosine LIME and ULIME. (d) Average difference between LnO’s
of Cosine LIME and ULIME. Differences have been averaged across entire datasets
(CIFAR-10, ImageNet, and MedNIST).
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(a) Chest X-ray (b) Eagle (c) Fish

Figure 4.5: Comparison of combined variance for the segmented images (a) Chest
X-ray, (b) Eagle, and (c) Fish shown in Figure 4.2.

across 10 runs per perturbation quantity. This consistency increased as the perturba-

tions were increased because the linear model learned from more data. In the case of

L2 LIME, the combined variance showed no sign of decrease when the perturbations

were increased. To illustrate this concept, Figure 4.5 compares the combined variance

between L2 LIME, Cosine LIME, and ULIME for images in Figure 4.2.

(a) Imagenet (b) CIFAR-10 (c) MedNIST

Figure 4.6: Comparison of the combined variance of L2 LIME, Cosine LIME and
ULIME per dataset (ImageNet, CIFAR-10, and MedNIST).

Figure 4.6 shows the average combined variance between coefficients for L2 LIME,

Cosine LIME, and ULIME explanations for all three datasets. In both cases, it can

be seen that L2 LIME explanations take longer to stabilize compared to ULIME

and Cosine LIME explanations. Within 3000 perturbations, there is no indication of

a decrease in the combined variance for the explanations generated with L2 LIME.

However, for ULIME and Cosine LIME, an instant decrease in combined variance can
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be observed for the three datasets.
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Chapter 5

Experimenting ULIME with CT Datasets

In this chapter, we investigate the application of Cosine LIME, L2 LIME, and ULIME

on two CT image datasets, one containing liver tumors, and the other pancreatic tu-

mors. The primary goal of this chapter is to understand how different superpixeliza-

tion techniques affect the quality of the explanation and the role of interpretability

methods in establishing clinicians’ trust in deep learning models trained on real-world

healthcare datasets. A continuing goal is to compare L2 LIME, Cosine LIME, and

ULIME, and to investigate if weights are really necessary for LIME image. This

Chapter is not meant to serve as a complete book on applying domain-specific super-

pixelization on medical images, since this is a vast topic. We introduce the concept,

propose our methodology, and leave further investigations for future research in this

direction.

5.1 Datasets

Our liver tumor dataset contains 335 patient liver CT image segmentation. The

tumor images belong to two classes; HCC (Hepatocellular Carcinoma) and MCRC
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Figure 5.1: Top Row: Three liver tumor slices. Bottom Row: Three pancreas tumor
slices.

(Metastatic Colorectal Cancer). Using one tumor per patient gave us 155 HCC tu-

mors and 180 MCRC tumors. Our pancreatic mass dataset contains 529 patient pan-

creas CT image segmentation. The tumor/mass images belong to three classes; IPMN

(Intraductal Papillary Mucinous Neoplasms), PNET (Pancreatic Neuroendocrine Tu-

mor), and PDAC (Pancreatic Ductal Adenocarcinoma). Using one tumor/mass per

patient, gave us 103 IPMN, 165 PNET, and 261 PDAC.

5.2 Preprocessing

The preprocessing is similar for both CT datasets. We first create a mask from

each tumor CT image, by setting all pixels outside the tumor to zero and inside the

tumor to one. We then dilate the mask using a 5x5 kernel so that the mask can

capture features beyond the tumor, such as the tumor boundary. This is because in
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some cases, tumor boundary has clinical significance in the prognosis of liver disease

[10]. Afterward, we create new CT images by multiplying the corresponding slices

of the tumor mask with the liver (liver tumor) and pancreas (pancreatic tumor)

segmentation effectively extracting the tumor plus extra boundaries surrounding the

tumor. Finally, we extract the largest tumor plus boundary slice from each CT image

by counting the total number of pixels that are greater than -1000 (background). To

ensure the features of the tumor were visible, Hounsfield units from -135 to 215 were

linearly mapped to gray levels from (0 to 1)/(0 to 255) when converting to PNG.

For pancreatic tumors only, we magnify the tumor by further cropping it to 120x120

pixels from the .PNG images. These images, shown in Figure 5.1, were used to train

our 2D CNN model.

5.3 Training

For the liver dataset, our train size was 285, 132 HCC, and 153 MCRC, and our test

size was 50, 23 HCC, and 27 MCRC. For the pancreatic dataset, our train size was

398, 78 IPMN, 196 PDAC, and 124 PNET and our test size was 131, 25 IPMN, 65

PDAC, and 41 PNET. For both datasets, we used the same 2D-CNN model as used

previously for the brain CT slice dataset in Figure 4.1, however, for the liver tumor

dataset, the model was slightly modified by removing the last convolution layer. The

number of epochs for training was set to 40. The loss function was the cross-entropy

loss. We used the Adam optimizer with a learning rate set to 0.0002 and weight decay

set to 1e-4. The weights were saved throughout the training process whenever the

validation loss reached a new minimum.
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5.4 Results

Figure 5.2 shows the train and validation loss for both models. The liver model

achieved 80% validation accuracy and the pancreatic model achieved 81% accuracy.

Table 5.1 and 5.2 shows the performance metrics and confusion matrix for the liver

model and table 5.3 and 5.4 shows the performance metrics and confusion matrix for

the pancreas model. Since our main objective was to apply different superpixelization

techniques and compare L2 LIME, Cosine LIME, and ULIME, therefore we did not

further tune the models, and instead focused on the interpretability analysis.

(a) (b)

Figure 5.2: Loss graphs of models trained on (a) liver tumor slices and (b): pancreatic
tumor/mass slices.

Class Precision Recall F1-Score

HCC 0.76 0.83 0.79
MCRC 0.84 0.78 0.81

Table 5.1: Liver model’s Precision, Recall and F1-Score.
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HCC MCRC

HCC 19 4
MCRC 6 21

Table 5.2: Liver model’s Confusion Matrix.

Class Precision Recall F1-Score

IPMN 0.96 0.96 0.96
PDAC 0.83 0.80 0.81
PNET 0.70 0.73 0.71

Table 5.3: Pancreas model’s Precision, Recall and F1-Score.

IPMN PDAC PNET

IPMN 24 1 0
PDAC 0 52 13
PNET 1 10 30

Table 5.4: Pancreas model’s Confusion Matrix.

5.5 Model Interpretability using LIME and ULIME

We tested L2 LIME, Cosine LIME, and ULIME on both models to see what features

it looks for when making a prediction. Figure 5.5 shows the heatmaps for each LIME

version. As can be seen, in some cases, L2 LIME does focus on the tumor but there

are more variations in the explanations compared to ULIME and Cosine LIME. On

the other hand, both ULIME and Cosine have similar heatmaps. Figure 5.4 shows

the average and minimum difference between LnO’s of L2 LIME, ULIME, and Cosine

LIME explanations. In both metrics, the difference between ULIME and L2 LIME

is mostly greater than zero meaning that ULIME shows a quicker accuracy decline

compared to L2 LIME. For Cosine LIME and ULIME, the difference is near zero. In
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the Liver difference specifically, we omit the MCRC class, because, regardless of the

superpixelization technique, the model looks at the background to make its prediction.

This makes sense since HCC tumors are typically much larger than MCRC tumors so

the model may be using the size difference as a discriminator between the two classes.

Figure 5.3: The model focuses on the background for MCRC tumors.

(a) (b)

(c) (d)

Figure 5.4: (a) Minimum difference between LnO’s of L2 LIME and ULIME. (b)
Average difference between LnO’s of L2 LIME and ULIME. (c) Minimum difference
between LnO’s of Cosine LIME and ULIME. (d) Average difference between LnO’s
of Cosine LIME and ULIME. Differences have been averaged across entire datasets
(Liver Tumor and Pancreatic Tumor).
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Segmented Image L2 LIME Cosine LIME ULIME

HCC

HCC

PDAC

PNET

IPMN

IPMN

Figure 5.5: Explanation comparison between L2 LIME, Cosine LIME and ULIME for
models trained on liver and pancreatic tumor data. Cosine and ULIME explanations
are very similar, and both are better than L2 LIME’s explanations.

We do understand that in this scenario, a simpler technique such as a linear

regression applied to white pixel count may be equally effective in differentiating
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between the two tumors, but we trained a CNN model solely for the purposes of

testing ULIME.

One limitation of LnO is that for a smaller number of classes, as the superpixels

are removed and replaced with zeros, the model ends up assigning a class to the

completely zeroed background. For example, in Figure 5.6, two LnO’s have been

shown for a PDAC image. The left LnO is for ULIME and the right LnO is for L2

LIME. Ideally, when the tumor superpixels are removed and replaced with zeros one

by one, the accuracy should decline and not raise up again, but since the model has

to ultimately assign a classification value to the completely zeroed image, it ends up

going up to 0.5. Therefore, even though ULIME explanation shows quicker accuracy

decline, instead of the difference of L2 LIME LnO - ULIME LnO being large, it

remains small. Different techniques can be used to solve this but we ended up taking

only a fourth of the LnO’s (The part that actually indicated information loss) for

those particular classes. Note that this issue exists minimally when the number of

classes is high since the zeroed image is more likely to get distributed to all classes.

(a) (b)

Figure 5.6: LnO limitation shown for PDAC. (a): ULIME. (b): L2 LIME
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5.6 Impact of Superpixelization on Explanations

Superpixelization has a direct effect on the intuitiveness of an explanation. If the

superpixelization is not done based on the domain of the image, the explanation can

end up highlighting unimportant parts of the image. This may lead to a user believing

the problem exists in the model. Domain-specific superpixelization means segmenting

the image into discreet parts where each part contains a single important region of

the image. The importance of the region has to be determined by an expert in that

domain. If we take an image of an animal, superpixelization should divide the body

into separate parts so that the explanation can highlight a particular part, e.g. the

ears of a cat. If the superpixel contains information beyond one body part, it becomes

unclear what part the model was looking for.

Figure 5.8 shows three types of pancreatic tumors. The tumors have been su-

perpixelized using two techniques; the author’s default Quickshift algorithm and our

modified SLIC algorithm. For liver tumors, radiologists usually observe the bound-

aries to predict the class of a tumor. Therefore, we modify our superpixelization

(a) (b)

Figure 5.7: Variance of (a) liver tumor explanations and (b) pancreatic tumor expla-
nations
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method so that it does a better job segmenting the boundary and the internals of

the tumor, giving more insight into what a model is looking for inside and around

the tumor itself. Since the boundary information is important for the IPMN, we can

immediately see an improvement in the explanation quality when we separate the

boundary from the tumor’s internals.

In our modified SLIC, we do not make changes to the algorithm itself, rather we

modify the input image before SLIC is applied. We do this by first converting the

tumor to a binary mask and eroding it using a 5x5 kernel making it slightly smaller.

Then we invert the erosion so that the tumor region is zero and the background is one,

and apply the binary AND operation between the original binary mask and the eroded

inverted mask. This gives us the boundary of the tumor only, with everything else

black. Afterward, we apply the SLIC algorithm to the boundary, thereby separating

the boundary from the tumor internals, and play around with the parameters to

further subdivide the separated boundary and internals. Finally, we overlay those

superpixels back on top of the original tumor. Please note that this is one of the

many ways domain-specific superpixelization can be achieved. We initiate domain-

specific superpixelization in our thesis by introducing one method, specifically for the

liver tumors where boundary information is important, and leave a broader study for

future research.
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Quickshift Heatmap SLIC Heatmap

IPMN

IPMN

IPMN

PDAC

PNET

HCC

HCC

Figure 5.8: Domain-specific superpixelization and its impact on explanations.
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5.7 Interpretable AI Compared to Radiologist Interpretation

As part of our research, we showed a radiologist from Memorial Sloan Kettering

Cancer Center the results of ULIME on several tumor types and requested feedback.

The radiologist observed the explanations and added his comments in Figure 5.9 and

Figure 5.10. He emphasized the need for deep learning models to be interpretable

so that physicians can observe what parts of an image the model looks at, which

will help understand if those areas are reasonably strong indicators for a particular

disease. Finally, he proposed using LIME for the segmentation of blood vessels, i.e.

segmenting the most important superpixels from the image. We believe that using

LIME for segmentation can be a unique application and leave it for future research.
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Image Heatmap

IPMN

Yellow areas on LIME map emphasize thickened wall of cystic pancreatic lesion.
A thickened wall is considered suspicious for malignancy on CT imaging, whereas
a thin smooth wall would be considered benign.

IPMN

Nodular portion of the wall anteriorly on CT also correspond to yellow
portions on LIME map.

IPMN

Nodular thickened wall along posterior wall correspond to yellow portion of the
LIME map.

IPMN

Irregular thickened wall corresponding to yellow portion of the LIME map.
In solid pancreatic malignancies, such as pancreatic adenocarcinoma (PDAC),
the tumors will be more internally heterogeneous on CT compared to
cystic neoplasms above.

Figure 5.9: Radiologist comments on our modified superpixelization tumor explana-
tions for IPMN.
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Image Heatmap

PNET

Pancreatic neuroendocrine tumors (PNET) are more uniformly,
hypervascular (bright) on CT. The LIME map shows relatively
uniform green to yellow components of the map overlapping the tumor.

PDAC

The tumor is centrally necrotic (slightly darker in the center),
but not cystic. The LIME map shows the most yellow portion, centrally.

HCC

Hepatocellular carcinoma (HCC) is a primary liver malignancy.
The yellow portion of the LIME map overlaps with a slightly
more heterogeneous enhancing portion of the tumor which contains a dark
(nearly black) spot, which may be an area of fat, a feature that is
relatively unique to HCC as a malignancy.

HCC

HCC with a mosaic appearance, a description that relates to
the mixing of different histological features, including viable tumor,
necrosis, and fibrosis. The yellow portion of the LIME map appears to
coincide with a septa (a linear dark grey line), which
is distinct in this tumor compared to pancreatic tumors above.

Figure 5.10: Radiologist comments on our modified superpixelization tumor explana-
tions for PDAC, PNET, and HCC.
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5.8 Superimposing Explanations on 3D Image

The explanations we see as heatmaps are 2D images for a particular tumor slice taken

from a larger CT image. In order to overlay the explanations back to the CT image

so that it’s more convenient for radiologists to inspect using their software, such as

3D Slicer, we first find the index of the tumor slice that we extracted and create an

empty 3D binary mask with the explanation placed exactly at that index. We then

save the 3D binary mask as a new CT image, and then open the original liver and the

binary mask in 3D Slicer. Afterward, we overlay both CT images together giving us

the explanation of the tumor placed on the liver from which the tumor was extracted.

Figure 5.11 illustrates the overlaying of the HCC tumor on the liver.

(a) (b)

Figure 5.11: Overlaying ULIME explanation for HCC tumor on the liver in 3D Slicer.
(a): Explanation Overlay. (b): Original Image

5.9 Conclusion

In this chapter, we trained our CNN model on two CT image datasets, liver, and pan-

creatic tumor datasets. The model trained well on both datasets. A comparison of

L2 LIME, Cosine LIME, and ULIME showed that ULIME explanations were compa-

rable to Cosine LIME, and both were more stable and better qualitatively compared
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to L2 LIME. Finally, we touched upon how different superpixelization techniques can

improve the visual quality and give more insights into what the black-box model is

looking at in an image.
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Chapter 6

Conclusion

Interpretable machine learning is a relatively new field that has gathered interest

due to the potential dangers of using black-box systems for critical applications.

Regulatory bodies, such as the U.S. FDA, have announced guidelines for medical

devices that use AI to be fully transparent to ensure physician/patient safety. To

achieve full transparency, more research is still left to be done in this field, and our

work contributes to this growing body of research. In this chapter, we summarize our

contributions and propose directions for future research.

6.1 Summary

In this thesis, we focused on the fundamental principle of LIME: locality. The distance

metric had a significant impact on valuing the similarity and dissimilarity between

perturbations. When we chose the distance metric to be L2, we observed high vari-

ations in the explanations. Changing to a normalized Cosine metric, a default used

by LIME authors, improved both the quality and stability of explanations. Since

the perturbations and prediction labels already indicated which features were impor-

tant, we removed the weighting step in our variant, ULIME, and found that both
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ULIME and Cosine LIME demonstrated similar performance across all benchmarks,

and both were better compared to L2 LIME. Therefore, our motivation for ULIME

was to simplify the interpretability technique, since removing the weighting step re-

moves a hyper-parameter that is responsible for the variation in explanations if chosen

incorrectly.

We also focused on domain-specific superpixelization for tumor images as an im-

proved preprocessing step. Using our modified superpixelization method, ULIME

explanations for liver and pancreatic tumor images were better in quality than the

standard. These explanations were further assessed by a domain expert (radiologist).

6.2 Future Work

There are several research questions worth considering for further research:

1. Are LIME explanations completely decoupled with the type of superpixelization

algorithm used? If we were to segment an image using two different segmen-

tation techniques, would the important superpixels in the first segmentation

technique match with the second?

2. How precisely can an image be segmented into smaller regions as a prepro-

cessing step? Is there a limit beyond which the explanation quality will start

deteriorating? Related, how does the number of perturbations required to con-

verge change with the granularity of the superpixels? More superpixels could

mean the number of possible perturbations grows exponentially and the finest

granularity would be just pixels.
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3. Is there a better way to pick the perturbations for LIME? We randomly gener-

ated perturbations to train the linear model which significantly decreased the

speed of the algorithm. Picking only the needed perturbations and/or finding

a better way to generate labels for perturbations would improve LIME perfor-

mance.

4. Are there other metrics that better reflect image interpretability? There re-

main many parameters in LIME for the user to decide, and we only touched

on one (the distance metric). Future investigation may include exploring the

significance of different types of interpretable models, interpretable model con-

figuration, and a number of features to use for the interpretable model.
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