
Discrete Time-Series Clustering and Linear

Temporal Logic Delineation

by

Brennan Cruse

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

May 2022

Copyright © Brennan Cruse, 2022

Abstract

The collection of information in this data-driven world has become paramount to the

way businesses and individuals interact with society. From personal wearable tech-

nology to weather prediction, sales forecasting, and everything in between, a common

characteristic among a significant proportion of this data is its relationship with re-

spect to time. Acting as a key to unlock the power contained within time-series data,

analytical techniques and logical representations provide a basis to translate data

into learning outcomes. While time series data represents a significant opportunity

for institutions and individuals to learn from the past to improve the future, the

prevalence of unstructured data within real-world settings is an active challenge for

existing analytical techniques. This impediment is especially relevant within research

areas such as goal recognition, policy summarization, and system dynamic modelling,

where the shared objective is to derive meaning from observed behavior. To establish

meaningful insights from unstructured time-series data, partitions and patterns must

be identified to effectively differentiate observations based on temporal attributes.

To address this, we propose two novel approaches, which both leverage linear

temporal logic to provide structure to unstructured discrete time-series data by iden-

tifying and contrastively explaining the differences between an unspecified quantity

of discrete time-series observations.

i

Our first proposed approach discovers a feature set of relevant temporal specifi-

cations to represent observations in vector-space, clusters data points via traditional

clustering algorithms, and delineates clusters via conjunction of linear temporal logic

features. Within reasonable search limits, we discover a near-perfect success rate for

accurate and complete cluster definitions found by our algorithm for six simulated

evaluation domains of three unique vocabulary sizes.

Our second proposed approach embraces a tree-based perspective to organize ob-

servations into clusters. By employing a Monte Carlo node-splitting approach, our

algorithm seeks balance to contrastively divide any given set of discrete time-series

observations into two sets with an accompanying temporal logic specification satis-

fying one of the sets. Recursively applying this procedure, we demonstrate the ef-

fectiveness of our approach to cluster and delineate discrete time-series observations,

allowing temporal logic specifications to evoke insight at each level of the resulting

tree.

ii

Acknowledgments

I would like to first express my sincere gratitude to my supervisor, Dr. Christian

Muise. Thank you for your continuous support, leadership, and guidance throughout

my Masters studies and completion of this research. Your patience and mentorship

has been instrumental in the pursuance of my goals.

I would also like to thank my fellow Mµ-lab members, as well as all faculty, staff,

and students in the School of Computing. Despite the many challenges associated

with remote learning and completing a graduate degree in the midst of a global

pandemic, I have always felt a strong sense of community. I cherish the relationships

that we have built.

Last but not least, I would like to thank my family and friends for being a constant

source of motivation and encouragement. I would not have been able to do this

without the incredible support network I am so fortunate to have.

iii

Contents

Abstract i

Acknowledgments iii

Contents iv

List of Tables vii

List of Figures ix

Chapter 1: Introduction 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Objective . 3
1.4 Contributions . 4
1.5 Organization of Thesis . 5

Chapter 2: Background 6
2.1 Discrete Time-Series Data . 6
2.2 Linear Temporal Logic (LTL) . 7
2.3 Contrastive Explanations . 10
2.4 Trace Clustering in Business Process Mining 13
2.5 Off-the-Shelf Clustering Evaluation Without Ground Truth 14

Chapter 3: Data Collection and Overview 17
3.1 Derivation of Evaluation Dataset . 17

Chapter 4: Vector-space Clustering using Temporal Logic Features 20
4.1 Methodology . 21

4.1.1 Overview . 21
4.1.2 Context-Aware Temporal Feature Generation 22
4.1.3 Feature Mapping . 26

iv

4.1.4 Cluster Discovery . 26
4.1.5 Delineation via Conjunct LTL Features 27
4.1.6 Delineation Approximation with BayesLTL 28
4.1.7 Parameterization . 29

4.2 Evaluations and Results . 31
4.2.1 General Effectiveness of Clustering/Delineation Process 31
4.2.2 General Evaluation of Delineation Approximation Approach . 36
4.2.3 Can Off-the-Shelf Clustering Metrics Accurately Describe Clus-

ter Strength? . 41
4.2.4 Approximating Discovery Rate of Temporal Features 44
4.2.5 Similarity of Discovered Clusters Versus Quantity of Features 47
4.2.6 Conclusions . 51

Chapter 5: Tree Discovery using Temporal Logic 53
5.1 Methodology . 53

5.1.1 Overview . 54
5.1.2 Tree and Node Structure . 55
5.1.3 Node Splitting Criteria . 57
5.1.4 Stopping Criteria . 61
5.1.5 Parameterization . 62
5.1.6 Evaluation Metrics . 65

5.2 Evaluations and Results . 67
5.2.1 General Effectiveness of Tree Generation 67
5.2.2 Analysis of Discovered Specifications 71
5.2.3 Node Size Versus Splitting Time 74
5.2.4 Probability Distribution of Information Gain with Respect to

Sample Size . 75
5.2.5 Specification Exploration Time Utility 77
5.2.6 Intelligent Splitting Process 79

5.3 Conclusions . 82

Chapter 6: Related Work 84
6.1 Time Series Data Predictability . 84
6.2 Plan Explanations . 85
6.3 Mining Linear Temporal Logic Specifications 89
6.4 Contrastive Explanations . 91
6.5 Temporal Logic Inference via Decision Tree Learning 92
6.6 Policy Summarization . 92
6.7 Trace Clustering in Business Process Mining 95

Chapter 7: Conclusion and Future Work 100

v

7.1 Comparison of Vector-Space and Tree-Based Approaches 100
7.2 Summary . 102
7.3 Limitations and Future Work . 104

Bibliography 107

Appendix A: Vector Space Methodology 117

Appendix B: Tree-based Methodology 120

vi

List of Tables

2.1 LTL Operators, Syntax, and Meaning 9

2.2 BayesLTL Templates [39] . 13

4.1 Size Analysis of Discovered LTL Describing Vector Space Clusters . . 33

4.2 LTL Size Analysis of Approximation Approaches 38

4.3 Delineation Error of Approximated Explanation Approach 39

5.1 General Evaluation of Sample Trees 70

5.2 Size Analysis of LTL Within Evaluation Trees 72

A.1 Blocks Examples of Clusters and LTL using Vector Space Method . . 117

A.2 Gripper Examples of Clusters and LTL using Vector Space Method . 117

A.3 Rovers Examples of Clusters and LTL using Vector Space Method . . 118

A.4 Satellite Examples of Clusters and LTL using Vector Space Method . 118

A.5 TPP Examples of Clusters and LTL using Vector Space Method . . . 118

A.6 ZenoTravel Examples of Clusters and LTL using Vector Space Method 119

B.1 Blocks Varying Sizes of LTL Examples using Tree-based Method . . . 120

B.2 Gripper Varying Sizes of LTL Examples using Tree-based Method . . 120

B.3 Rovers Varying Sizes of LTL Examples using Tree-based Method . . . 121

B.4 Satellite Varying Sizes of LTL Examples using Tree-based Method . . 121

vii

B.5 TPP Varying Sizes of LTL Examples using Tree-based Method 121

B.6 ZenoTravel Varying Sizes of LTL Examples using Tree-based Method 122

viii

List of Figures

2.1 Example of a Trace and its Labelled Components 7

2.2 An Applied Example of Contrastive Explanations 11

4.1 Flow Diagram of LTL Feature Set Discovery Process 25

4.2 Vector-Space Matrix of Traces and Temporal Features 26

4.3 Conjuctive LTL Search Success Versus Quantity of Features Plots . . 36

4.4 Evaluation Plots of No-Ground-Truth Clustering Metrics 43

4.5 Evaluation Plots of LTL Rate of Discovery 46

4.6 Cluster Similarity Versus Quantity of Features Plots 50

5.1 Flow Diagram of Tree Generation Process 55

5.2 Structural Representation of Delineation Tree Format 56

5.3 Flow Diagram of Monte Carlo Splitting Process 60

5.4 Example of a Generated Tree from Blocksworld Domain 68

5.5 Histograms Representing Distributions of LTL Size in Evaluation Trees 73

5.6 Evaluation Plots of Execution Time Versus Node Size 75

5.7 Kernel Density Estimations of Information Gain Versus Sample Pro-

portion . 76

5.8 Information Gain and Execution Time Versus Maximum Iterations Plots 79

5.9 Flow Diagram of Experimental Intelligent Splitting Process 80

ix

6.1 Spaghetti Process Model Example [1] 96

x

1

Chapter 1

Introduction

1.1 Motivation

As dependence on time-series data grows within this technology-driven world, the

demand for better techniques to analyze and understand temporal trends becomes

increasingly prominent. Unlike the analysis of cross-sectional data which evaluates

observations at a single point in time, time-series data evaluates observations at sev-

eral points in time. This leads to an abundance of data points, where the interaction

of binary variables, with respect to their order of occurrence, record complex phenom-

ena. Especially in real-world settings, however, several events occur simultaneously.

Consequently, the information contained within time-series data can be enormously

powerful, but proportionately difficult to analyze, due to its lack of structure. This

lack of structure is typically associated with abundant data, consisting of no order,

categorization, or implied meaning. While time-series data represents a significant

opportunity for institutions and individuals to learn from the past and present to

improve the future, the prevalence of unstructured data within real-world settings

1.2. PROBLEM 2

represents an active challenge for existing analytical techniques. To address this chal-

lenge, we propose a novel approach to provide structure to unstructured time-series

data. By leveraging linear temporal logic, our proposed method successfully clusters

an unspecified quantity of discrete time-series observations and contrastively explains

chosen allocations.

1.2 Problem

Discrete time-series data, which can take the form of traces, exist naturally within a

diverse range of domains, with examples including financial transactions [47], weather

recordings [51], pandemic severity logs [8], and rock climbing movements [33]. While

the sources and diversity of data collection are extensive, the structure of resulting

observations are more difficult to pinpoint, impacting the ability of researchers to

isolate and understand patterns.

Most prior works in this area have focused on effectively summarizing a single set

of traces by determining temporal specifications that are satisfied by all traces in a

given set. More recently, however, research has shifted focus towards contrastive ex-

planations, where the task is to automatically identify specifications that differentiate

two sets of traces. While contrastive explanations arguably offer greater insight than

summarization-based approaches, because they allow trade-offs within plan rationale

to be understood, the conditions required for these techniques to be applicable are

quite niche. Most importantly, traditional contrastive explanation research con-

denses the assertion of contrast to exactly two predefined sets of traces using positive

and negative labels. In practical applications however, predefined labels are often

nonexistent, and natural decomposition likely leads to more than two categories of

1.3. OBJECTIVE 3

observations. To accommodate this, we re-imagine contrastive explanations to ac-

count for multiple sets of traces. We also facilitate the natural discovery of contrastive

sets, such that prior definitions of groups are not required as input. Since we are the

first to both cluster and delineate multiple sets of traces, there is no baseline for us

to compare our approach to. By automating the discovery of similar groups of traces

and describing temporal differences amongst clusters, our approach expands the scope

and adaptability of contrastive explanations.

The input to the problem is a set of plan traces, representing discrete time-series

data to be evaluated. This collection of input traces takes the form of {Trace1,

Trace2, ..., Tracen}, and is unlabelled, containing no predefined order. Each trace

within this input set represents an individual data point to be categorized and delin-

eated. The output of the problem is a collection of cluster-defining LTL statements

taking the form of {LTL1, LTL2, ..., LTLk}, that some traces from the input set sat-

isfy and some traces do not. Acting as a sorting mechanism for traces, these discovered

formulas achieve both clustering and delineation objectives, in addition to allowing

new traces to be seamlessly incorporated into the understanding of larger systems.

1.3 Objective

The primary objective of this work is to explore the topic of discrete time-series

clustering and examine its practical application within simulated environments. Two

unique methodologies are proposed and applied to the explanation of traces within

a variety of diverse sample domains. This thesis aims to provide a mechanism for

researchers to achieve stronger insights when analyzing discrete time-series data by

establishing two unique frameworks to effectively cluster and delineate traces.

1.4. CONTRIBUTIONS 4

1.4 Contributions

The following contributions were made in pursuit of the research objectives.

• A vector-space method is proposed which uses the BayesLTL framework [39], as

well as clustering algorithms to infer LTL specifications for contrastive explana-

tions considering any quantity of candidate groups of traces. LTL features are

learned by analyzing contrastive explanations between sample groups of traces,

leading to intelligent groupings via traditional algorithmic clustering. Our novel

procedure operates according to the following steps:

1. Process input set of traces to establish feature set of relevant context-aware

temporal properties. Features take the form of LTL formulas, which each

trace either satisfies or does not satisfy. This results in matrix of binary

measurements representing temporal characteristics of traces.

2. Cluster input set of traces via traditional clustering algorithms based on

established feature set to identify labels and allocate traces into subgroups.

3. Analyze resulting clusters according to their collective entailment of initial

LTL features. Embrace conjunctive LTL search space to establish cluster

definitions and differentiate groups.

• A tree-based method is also introduced to infer LTL specifications for con-

trastive explanations, where the objective is to automatically identify k sets of

traces guided by temporal logic specifications. By evaluating sets of traces on a

single-split basis, a recursive tree structure is generated, which is demonstrated

to effectively explain the characteristics of traces. Our tree-based method’s

novel procedure is as follows:

1.5. ORGANIZATION OF THESIS 5

1. Initialize input set of traces within root node of a binary tree data struc-

ture.

2. Recursively execute novel node splitting approach that seeks balance to

identify LTL capable of dividing nodes into two similarly sized subsets.

3. Analyze cluster definitions by reading LTL off of the resulting tree via the

path of the root to terminal nodes.

1.5 Organization of Thesis

This thesis begins with an introduction to the background of linear temporal logic

and plan explanations as applied to discrete time-series data in Chapter 2. The data

used to evaluate the methodologies within this study is introduced in Chapter 3. The

first vector space clustering methodology is discussed and evaluated in Chapter 4,

followed by the second tree-based methodology in Chapter 5. Chapter 6 summarizes

this thesis in the context of related work, and finally, Chapter 7 concludes this study

by comparing our two methodologies and providing an overview of potential future

extensions.

6

Chapter 2

Background

2.1 Discrete Time-Series Data

A trace is a form of time-series data that is designed to record changing states of

the world over a period of time. Traces are composed of a series of bit vectors that

individually describe instances of time, and are referred to as steps or states. Each

bit within a given bit vector corresponds with a binary variable, which we refer to

as a fluent, that is either true or false at each time step. While traces represent

a discrete form of time-series data, continuous variables can also be discretized and

represented within traces through the use of bins. Additionally, a set of traces

can be constructed (which is the structure of our algorithm’s input), where multiple

distinct traces exist within an even larger structure, which is denoted simply as an

array of traces. An example of the structure of a single trace is presented in Figure

2.1, where the trace of a traffic light transitioning from green to yellow to red is

depicted and labelled.

As can be seen by this traffic light example, traces are a powerful way to repre-

sent temporal systems, since traces allow changing states over time to be accurately

2.2. LINEAR TEMPORAL LOGIC (LTL) 7

Figure 2.1: Example of a Trace and its Labelled Components

An example of a trace representing a traffic light that transitions from green to yellow to
red. Each bit vector within this example represents a state of the world at a unique step
in time, and the order of these bit vectors allows changes over time to be understood.

recorded via this notation. Additionally, these variables allow the interaction of var-

ious elements to be observed as they become active and inactive in different states.

This also allows rules to be deduced that can provide greater insight into system

dynamics. For instance, within the traffic light example, we can observe that the

light is only ever one colour at a given time. In order to express these rules, state-

based modal logics, such as linear temporal logic, can seamlessly be integrated into

the analysis of trace data, which allows for powerful insights to be discovered and

described.

2.2 Linear Temporal Logic (LTL)

Due to its powerful ability to encode relationships between events in time, LTL rep-

resents an effective medium for describing system behaviour in relation to the past,

present, and future. LTL is a modal logic, and was first proposed by Pnueli in 1977

2.2. LINEAR TEMPORAL LOGIC (LTL) 8

[52]. It has become widely adopted for applications such as automata-theoretical

model checking [66, 54, 43], property expression in formal verification [30, 41], and

as a specification language [39, 35, 44]. Due to its modalities referring to time, LTL

is capable of expressing concepts such as possibility and necessity. For example, the

characteristic of a traffic light always turning red after yellow can be represented by

LTL as G(¬yellow|X(red)). This example demonstrates necessity because the light

is defined to always be yellow or not yellow. Possibility is also demonstrated because

if the light is yellow in the current state, it will be red in the next state.

The syntax of LTL consists of two fundamental operators, “next”(X) and

“until”(U), as well as additional operators built from those. The first fundamen-

tal operator, X, is designed to provide a constraint for the next period in time, where

the proposition Xφ is defined to be true if in the next time period φ is true. The sec-

ond fundamental operator, U, is designed to connect various fluents with each other,

where the proposition ψ U φ is defined to be true if ψ remains true in every state

until φ becomes true. In addition to the two fundamental operators, higher-order

operators can also be arbitrarily defined by practitioners using complicated formulas

of X and U to create syntactically simple representations of advanced logical concepts

for strengthened usability. For example, within BayesLTL [39], the template operator

ϕstability is defined as true if the proposition pi eventually occurs and stays true forever.

While in the lowest level of LTL, the most simple way to represent this concept is

as (1U !(1U !pi))∧!(1U !(!pi|!(1U !(pi|!(1Upi))))), BayesLTL’s template definition allows

the higher-level formula stability(pi) to represent the same thing. Other template

operators used within BayesLTL can also be examined in Table 2.2. Traditionally

within LTL applications, four common higher-order operators are defined, which are

2.2. LINEAR TEMPORAL LOGIC (LTL) 9

“eventually”(F), “global”(G), “weak until”(W), and “release”(R). The proposition

Fφ is defined to be true if φ eventually becomes true at some future period. The

proposition Gφ is defined to be true if φ is true throughout the entire trace. The

proposition ψ W φ is defined to be true if ψ holds until φ is true, and if φ never

becomes true, then ψ must hold true globally. The proposition ψ R φ is defined to

be true if φ is true up to and including the state where ψ first becomes true and if

ψ never becomes true, φ must be true globally. Finally, the proposition ψ M φ is

the same as release, but the release condition ψ must occur. An overview of these

operators are represented within Table 2.1. By applying these unique operators, LTL

possesses a vast ability to describe system behaviour within a wide variety of diverse

domains.

Operator Syntax Meaning Unabbreviated
Next Xφ φ has to hold at the next state Xφ

Until ψ U φ
ψ has to hold at least until φ becomes true,
which must hold at the current or a future position

ψ U φ

Eventually Fφ φ eventually has to hold (may later become false) 1 U φ
Global Gφ φ has to hold on the entire subsequent path !(1 U !φ)

Weak Until ψ Wφ
ψ has to hold at least until φ; if φ
never becomes true, ψ must remain true forever

ψ U (φ | !(1 U !ψ))

Release ψ R φ
φ has to be true until and including the point where
ψ first becomes true; if ψ never becomes true,
φ must remain true forever

φ U ((φ & ψ) | !(1 U !φ))

Strong Release ψ M φ
φ has to be true until and including the point where
ψ first becomes true, which must hold at the current
or a future position

φ U (φ & ψ)

Table 2.1: LTL Operators, Syntax, and Meaning

Standard LTL operators that are used to encode formulae about temporal paths, along
with their associated syntax and meaning. LTL’s fundamental operators, Next and Until,
comprise the language, and additional operators are build from the fundamental operators

for succinctness and readability. Unabbreviated equivalences of operators are also
presented.

When evaluating the size |ϕ| of an LTL formula, we embrace Gaglione et al.’s

2.3. CONTRASTIVE EXPLANATIONS 10

definition, which counts the number of unique subformulas contained within an ex-

pression. For example, the size of ϕ = (p UXq) ∨ Xq is 5 because the unique

subformulas in ϕ are p, q, Xq, p UXq, and (p UXq)∨Xq [28]. Similiar to BayesLTL

[39], we embrace the same interpretable templates used by Kim et al. in our research;

these templates can be viewed in Table 2.2.

2.3 Contrastive Explanations

As an alternative to traditional planning research which seeks to investigate the pro-

cess of identifying optimal plans from problems, the area of plan explanation seeks

to identify and describe characteristics of problems from plans. To make sense of ob-

served actions, plan explanation research focuses on automatically learning temporal

properties that allow system behaviour to be modelled, understood, and predicted.

Contrastive explanations elevate the plan explanation problem to describe temporal

differences between two sets of plan traces. Formulated in temporal logic, contrastive

explanations use the entailment of logical statements to differentiate traces; a trace

entails a formula when the behaviour within the trace is consistent with the formula’s

specified logic. The goal of contrastive explanations is to then identify formulas that

are entailed by all traces in a predefined positive set of traces, but not entailed by

all of the traces in a predefined negative set of traces. An example of contrastive

explanations in action is presented in Figure 2.2. In this example, we observe two

unique traffic light systems. In the first system, which is commonly found in Canada,

the traffic light transitions from red, to green, to yellow, then repeats this cycle. The

second system is common in Europe and the UK, where red/yellow also occurs after

green and before red. To differentiate these two systems, we can use the following

2.3. CONTRASTIVE EXPLANATIONS 11

LTL statement:

G(¬red|X(green))

This contrastive explanation translates to “green comes next after red”, which is true

for system #1, but false for system #2. Since this example contains only three fluents

and limited cyclical observations, it is easy to manually differentiate these systems;

however, when additional complexity is introduced, automatic generation techniques

must be relied on.

Figure 2.2: An Applied Example of Contrastive Explanations

An example of two unique traffic light systems that contrastive explanations can be
applied. A contrastive explanation to effectively differentiate these two systems is

G(¬red|X(green)), which means “green comes next after red”. Since this LTL statement
is true for system #1, but not for system #2, this is an accurate contrastive explanation

to describe their difference.

Approaches to automatic generation of contrastive explanations have adopted

2.3. CONTRASTIVE EXPLANATIONS 12

SAT-based methods [49, 16, 28], in addition to Bayesian inference, as in the BayesLTL

framework [39]. Our approach embraces the Bayesian inference strategy, using

BayesLTL as a subprocess. Building on the strengths of LTL, BayesLTL [39] proposes

a method to contrastively explain the differences between two sets of plan traces us-

ing LTL specifications. BayesLTL approaches specification learning as a Bayesian

inference problem by building upon the fundamental Bayes theorem P (ϕ|X) =

P (ϕ)P (X|ϕ)∑
ϕ∈Φ P (ϕ)P (X|ϕ)

. The goal of BayesLTL is to then infer ϕ∗ = argmaxΦP (ϕ|X), where

P (ϕ) represents the prior distribution over the hypothesis space, and P (X|ϕ) is the

probability of observing evidence (πA, πB), representing two unique sets of traces,

given LTL specification ϕ. A probabilistic generative modelling approach is then

used through the development and implementation of a prior function, a likelihood

function, and a proposal function. BayesLTL’s prior function is built to allow the

system designer to incorporate their preferences. For example, the user might choose

to specify a preference for “global” operators versus “until” operators. According

to the system designer’s parameter configuration, the prior function chooses a LTL

template from a table of potential options (shown in Table 2.2) and decides upon the

number of conjuncts and proposition instantiations for the various conjuncts. The

likelihood function asserts contrast between the two sets of traces. By assuming that

individual traces within sets are independent of each other, the likelihood of observing

the input sets of traces within the satisfying (πA) and non-satisfying (πB) sets can

be calculated via P (X|ϕ) =
∏πA

i=1 P (πi|ϕ)
∏πB

j=1 P (πj|ϕ). Satisfaction checks are then

conducted over all traces from both sets for the respective LTL specifications, which

also provides robustness for outliers and noise. Finally, BayesLTL’s proposal function

approximates the true posterior and MAP estimates {ϕ∗} by sampling from the true

2.4. TRACE CLUSTERING IN BUSINESS PROCESS MINING 13

posterior distribution and applies a Markov Chain Monte Carlo method to optimize

template and LTL selection. In coordination with each other, these functions oper-

ate effectively together to generate relevant and interesting LTL specifications and

differentiate a pair of trace sets.

Template Meaning Formula
global pi is true throughout the entire trace Gpi

eventual pi eventually occurs (may later become false) Fpi
stability pi eventually occurs and stays true forever FGpi ∧G(pi → (piWG¬pi))
response If pi occurs, pj eventually follows G(pi → XFpj)

until pi has to be true until pj eventually becomes true piUpj
atmostonce Only one contiguous interval exists where pi is true G(pi → (piWG¬pi))

sometime before If pi occurs, pj occurred in the past (pj ∧ ¬pi)R(¬pi)

Table 2.2: BayesLTL Templates [39]

The set of LTL templates embraced within BayesLTL [39], adopted within this thesis.
When multiple propositions are used in a template, the condition is asserted for all

propositions using conjunction. See Table 2.1 for an overview of LTL operators.

2.4 Trace Clustering in Business Process Mining

Research from the field of Business Process Mining has explored trace clustering

as a means of reducing noise associated with data collected from realistic unstruc-

tured environments. Since multitudes of independent processes can exist within single

event logs, the effectiveness of process mining techniques can benefit from separating

out these unique elements and analyzing them individually. To cluster event logs

and isolate unique processes, the field has adopted three broad classes of techniques,

categorized as vector space clustering, context aware clustering, and model-based

clustering.

2.5. OFF-THE-SHELF CLUSTERING EVALUATION WITHOUT
GROUND TRUTH 14

By using the contents of event logs and organizing them according to their at-

tributes, vector space clustering embraces traditional clustering algorithms to distin-

guish groups of traces. As an alternative to vector-space clustering, context-aware

trace clustering adapts the control-flow handling of the information with traces. As

an extension of context-aware clustering, R.P. and Aalst show thats context-aware

clustering can also be employed in conjunction with vector-space clustering by using

context-aware attributes as features [12].

2.5 Off-the-Shelf Clustering Evaluation Without Ground Truth

Evaluating the strength of discovered clusters represents a challenge when the ground

truth of the problem is unknown. Additionally, due to the flexible nature of delin-

eation, there may be multiple underlying ground truths. This means that there is

nothing to directly compare the discovered clusters to and measure their degree of

correctness, as one would extrinsically be able to do with most unsupervised learning

problems. In order to address this issue, researchers have introduced intrinsic evalu-

ation metrics to measure clusters relative to themselves and to each other. Perhaps

the most insightful intrinsic evaluation metrics available are the silhouette coefficient

[38], the Calinski-Harabasz index [15], and the Davies-Bouldin index [23].

The silhouette coefficient [38] is a tool that was introduced in 1990 to measure

clustering strength by evaluating distances between the respective clusters according

to the attributes of the items within. With silhouette values ranging from -1 to

1, items are scored higher if they are closer to the other items within their cluster

(cohesion) and farther from the other items outside of their cluster (separation). With

a(x) representing the average distance from x to all vectors within the same cluster

2.5. OFF-THE-SHELF CLUSTERING EVALUATION WITHOUT
GROUND TRUTH 15

and b(x) representing the average distance from x to all vectors outside of the cluster,

the silhouette value for each item can be measured via s(x) = b(x)−a(x)
max{a(x),b(x)} , and the

silhouette coefficient can then be calculated according to SC = 1
N

N∑
i=1

s(x), where N

is the quantity of samples and i is used to iterate over each instance. Values of the

silhouette coefficient close to 1 are most desirable because this means that clusters

are far apart from each other and clearly distinct. When the silhouette coefficient is

closer to 0, clusters are very similar to each other and the distance between them is

insignificant.

The Calinski-Harabasz index [15] measures the ratio of variance between

within-cluster dispersion and between-cluster dispersion. The Calinski-Harabasz in-

dex is similar to the silhouette coefficient [38] in that it is designed to measure the

strength of derived clusters based on cohesion versus separation, however the Calinski-

Harabasz index does so by evaluating distances from centroids. To calculate this for

a set of data E of size nE and number of clusters k, between-cluster dispersion is

derived via Bk =
k∑
q=1

(cq − CE)(cq − CE)T , where cq represents the center of cluser

q, and cE represents the center of E, and within-cluster dispersion is derived via

Wk =
k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T . The Calinski-Harabasz index can then be calculated

according to tr(Bk)
tr(Wk)

× nE−k
k−1

. Similar to the silhouette coefficient, higher values of the

Calinski-Harabasz index are most desirable beacause they represent clusters that are

more dense and well separated.

Finally, the Davies-Bouldin Index [23] is designed to measure the average simi-

larity between clusters by aggregating an evaluation of similarity between each cluster

and its most similar counterpart. To do this, given a cluster (i), cluster diameter (si),

and distance between cluster centroids i and j (dij), the similarity (Rij) for each

2.5. OFF-THE-SHELF CLUSTERING EVALUATION WITHOUT
GROUND TRUTH 16

cluster can be calculated via
si+sj
dij

. The Davies-Bouldin index can then be calculated

according to 1
k

∑k
i=1 maxi 6=j Rij. Since the Davies-Bouldin index measures the sim-

ilarity of clusters, lower scores are indicative of more distinct clusters representing

stronger allocations of data points.

Since these clustering metrics are designed to evaluate generic clustering strength,

their applicability can differ across unique datasets. This means that, while their

adaptability can be a powerful tool for some problems, they can fail within others.

Within our vector-space approach, we will assess the ability of these three metrics to

evaluate the strength of our discovered clusters.

17

Chapter 3

Data Collection and Overview

3.1 Derivation of Evaluation Dataset

The derivation of an evaluation dataset is critical to the analysis of the proposed

methods within this thesis. As a baseline for trace generation, classical automated

planning domains represent an excellent tool. While standalone planning domains are

inappropriate for widespread testing, since they are often designed to probe specific

details of performance, the use of a diverse selection of multiple domains can lead to

strong evaluations. Available by the International Planning Competition (IPC), the

problem domain definition language (PDDL) domain/problem files of a wide selection

of these domains are made accessible to be used as benchmarks [26]. We selected six

of these classical planning domains for our evaluation, which include blocksworld,

gripper, satellite, zenotravel, TPP, and rovers. In addition to these six domains, we

also embraced three vocabulary sizes in {10, 15, 20} for each. Designed to represent

diversity in testing, the selected domains and vocabulary sizes will allow unique details

of performance to be probed within both methodologies.

3.1. DERIVATION OF EVALUATION DATASET 18

The injection of LTL ground truth into these domain/problem files was then ex-

plored using the LtlFond2Fond framework [17], similar to BayesLTL’s [39] approach to

dataset generation. Designed to address the diversity of real-world planning problems,

LtlFond2Fond enables problems otherwise unsolvable by planning techniques to be

adapted and solved. By evaluating temporally extended goals specified in LTL and

compiling them into problem instances, LtlFond2Fond effectively returns modified

PDDL domain/problem files that can be handled by automated planners; this allows

known ground truth to exist within generated traces. While the injection of known

ground truth is helpful to evaluate the ability of traditional contrastive explanation

frameworks to differentiate traces, since our approach is designed to differentiate sev-

eral sets of traces, an abundance of viable options may exist. Essentially, it does not

matter if a specific ground truth is found or not, as long as a high-quality ground

truth is identified. For that reason, we chose not to use LTL injection, as compared

to BayesLTL.

With our set of 18 domain/problem PDDL files, the task of computing plans was

assigned to a planner. Since the objective of data set acquisition is focused on achiev-

ing a specific quantity of plans, rather than maximizing plan quality, tools from the

area of diverse planning were used for this task. While the goal of traditional cost-

optimal planning is to identify a single best plan corresponding to the lowest possible

cost, a requirement of a valid evaluation dataset is such that multiple plan traces are

identified. An effective type of diverse planning that considers our needs is called

diversity-bounded diverse planning. Originally introduced by Nguyen et al. through

their LPG-d planner [50], diversity-bounded diverse planning generates k-plans con-

strained by a diversity metric, which forces plans to have a minimum quantity of

3.1. DERIVATION OF EVALUATION DATASET 19

measured difference from the other generated plans. As an evolution of diversity-

bounded diverse planning, Katz and Sohrabi introduced an improved planner with a

novel post-processing procedure [36]. Katz and Sohrabi’s planner offers a wide va-

riety of diversity metrics that can be provided as a bound by the user; an effective

bounding metric that the planner offers is called stability similarity [27, 21]. Stabil-

ity similarity measures the ratio of actions appearing in both plans compared to the

total quantity of actions. In order to create a set of k unique plans with a minimum

quantity of measured difference, Katz and Sohrabi’s planner, in conjunction with the

stability similarity, was used as an effective tool.

20

Chapter 4

Vector-space Clustering using Temporal Logic

Features

Our vector-space approach is designed to cluster and delineate traces by identify-

ing context-aware temporal characteristics of traces, and using these features, along

with traditional clustering algorithms, to establish sub-groups. Clusters are then de-

lineated via the identification of conjunctive LTL features to distinguish the traces

in each cluster from those in other clusters. Through this robust process, discrete

time-series data can effectively be clustered and delineated according to temporal

attributes.

We evaluate the effectiveness of this approach by establishing a sample set of clus-

ter sets derived by this method. By measuring the LTL size of these resulting cluster

definitions and assessing their ability to accurately describe clusters, we determine a

high level of effectiveness. Next, we test the ability of our approximated delineation

approach and compare the resulting explanations with respect to LTL size and accu-

racy. We then assess off-the-shelf clustering metrics as a possible measure of cluster

strength, and determine that due to the uniqueness of our input data, these metrics

4.1. METHODOLOGY 21

are of little use. Finally, we test the consistency of our approach by analyzing the

similarity of clusters discovered via running this approach multiple times on the same

data. Overall, we identify that clustering traces in vector-space according to context-

aware attributes is a highly effective approach to clustering and delineating discrete

time-series data.

4.1 Methodology

Our vector-space methodology begins by sampling subsets of traces from the larger set

and identifying representative contrastive explanations between subsets via BayesLTL

[39]. The resulting LTL statements are then used to create binary features that allow

traces to be represented in vector-space via their satisfaction of each respective for-

mula. Next, by applying traditional clustering algorithms, trace-vectors are clustered

into groups of similarly behaving elements. Finally, to delineate each cluster, we iden-

tify a set of LTL statements that the all traces in the cluster satisfy, but no traces

outside of the cluster satisfy. Alternatively for delineation, we offer an approximation

approach which uses BayesLTL once again to differentiate clusters for more compact

formulas, however the tradeoff becomes the strength of cluster definitions.

4.1.1 Overview

The identification of contrastive temporal patterns between randomized subsets of

traces represents the first step in our clustering process. To discover these patterns,

we introduce a procedure where random subsets are constructed, and the BayesLTL

framework [39] is used to reveal contrastive explanations. Since BayesLTL generates

valuable insightful formulas within the analysis of each random set, these statements

4.1. METHODOLOGY 22

have the potential to pinpoint key similarities and differences between observations

in the global set of traces. Embracing the discovered contrastive explanations, we

establish a feature set of LTL specifications, by which individual traces are evaluated

for entailment. The resulting matrix of binary information sorted by traces can

then be clustered according to traditional unsupervised algorithms. To complete

the delineation process, we then use the conjunction of LTL features to differentiate

clusters. Alternatively, we also offer a variant explanation step which uses pairwise

BayesLTL for a more compact, but approximate result. The output of our process is

then the identified clusters, as specified by the LTL in our final step, along with the

temporal specifications to delineate their selection. These steps are also outlined as

follows:

1. Initialize Set of Traces to be Clustered

2. Establish LTL Formulas via Feature Discovery Process (See Figure 4.1)

3. Create Dataframe by Evaluating Traces for Entailment of LTL Features (See

Figure 4.2)

4. Cluster Dataframe via Traditional Clustering Algorithms

5. Explain Identified Clusters Using LTL Feature Conjunctions (see Section 4.1.5)

or Pairwise BayesLTL [39] (See Section 4.1.6)

6. Return Clusters and Contrastive LTL Definitions

4.1.2 Context-Aware Temporal Feature Generation

In order to provide traditional clustering algorithms information to differentiate

groups of traces, we must first identify a feature set of relevant temporal specifications.

4.1. METHODOLOGY 23

This feature set is generated to be relevant to the input set of traces by identifying

contrastive temporal patterns amongst subsets of traces. To discover temporal pat-

terns within subsets of trace data, we embrace a sampling process in coordination

with the BayesLTL framework [39]. We begin by randomly sampling a subset of

traces from the full set and conduct a balanced split to establish two equally sized

subsets. We then label one of these subsets positive and the other negative, which

satisfies the input requirements of BayesLTL. By running BayesLTL on these subsets,

we are then provided with contrastive explanations designed to differentiate the sets

of traces. By default, BayesLTL returns the 10 best specifications. We store all of

these discovered specifications before randomly sampling a new subset of traces and

repeating this process; in future iterations however, we only keep specifications that

are novel to our stored set of formulas. Once a desired quantity of specifications is

fully generated, our procedure returns the set of unique formulas. An overview of this

process can be viewed in Algorithm 1 and in Figure 4.1.

Since feature quality is typically subjective and cannot be quantitatively evalu-

ated, we rely on two important considerations to remain confident in this process to

generate relevant features. The first consideration is the proven ability of reasonably

sized sample sets to represent the parent set, which we demonstrate in Section 5.2.4.

We identify that samples as small as 2% are capable of representing the global set

within some of our evaluation domains, and samples as small as 10% within all of our

evaluation domains. The second element that we consider is the significant strength of

BayesLTL to differentiate subsets of traces. Factoring in both of these considerations,

this means that each LTL specification within the feature set should be capable of

4.1. METHODOLOGY 24

precisely describing relevant variation within traces from the input set. As the quan-

tity of features is increased, the ability of the feature set to extract meaningful insight

into the temporal behaviour of the input set should increase drastically.

Algorithm 1: LTL Feature Discovery Process

Input: Set of traces πn
Parameters: Statement limit imit, Sample proportion p
Output: Feature set {ϕ} of relevant LTL formulas

1: formulas← []
2: while (len(formulas) < limit) do
3: πsample ← random sample set of size p|πn| from πn
4: π+, π− ← random balanced split of πsample
5: for values of ϕ resulting from BayesLTL(π+, π−) do
6: if (|formulas| < limit) and (ϕ not in formulas) then
7: Append ϕ to formulas
8: end if
9: end for

10: end while
11: return formulas

4.1. METHODOLOGY 25

Initialize Set of Traces to be Clustered

Randomly Sample Subset of Traces from Initial Set

Randomly Split Subset into Two Equally Sized Subsets

Run BayesLTL [39] to Generate List of Contrastive LTL Specifications

Have All
Resulting

Specifications
Been Analyzed?

Has Statement
Limit Been
Reached?

Is the Next LTL
Statement
Previously

Undiscovered?

Store LTL Specification

Return All Stored LTL

No

Yes

Yes

No

Yes

No

Figure 4.1: Flow Diagram of LTL Feature Set Discovery Process

Flow diagram of our vector-space feature discovery process. By conducting random
samples from the parent set and identifying contrastive explanations from representative

subsets, this process facilitates the discovery of relevant LTL characteristics of input
traces.

4.1. METHODOLOGY 26

4.1.3 Feature Mapping

Using our discovered set of LTL formulas, we embrace each unique specification as a

feature to describe traces in the global set. Again using functionality from BayesLTL

[39], we conduct entailment analysis between every trace and every formula; this is a

very computationally simple calculation which is completed fast, even for very large

datasets. This results in a matrix of size |π|× |ϕ| containing binary data, where rows

represent individual traces, and columns represent LTL features; see Figure 4.2 for

a visual representation of this data structure. While this transformed representation

of the input set of traces may on the surface appear equally disorderly to raw trace

data, underlying temporal patterns have now been exposed for similarity distance to

be measured.

ϕ0 ϕ1 ϕ2 ϕ3 ϕ...

π0 π0

?

|= ϕ0 π0

?

|= ϕ1 π0

?

|= ϕ2 π0

?

|= ϕ3 π0

?

|= ϕ...

π1 π1

?

|= ϕ0 π1

?

|= ϕ1 π1

?

|= ϕ2 π1

?

|= ϕ3 π1

?

|= ϕ...

π2 π2

?

|= ϕ0 π2

?

|= ϕ1 π2

?

|= ϕ2 π2

?

|= ϕ3 π2

?

|= ϕ...

π3 π3

?

|= ϕ0 π3

?

|= ϕ1 π3

?

|= ϕ2 π3

?

|= ϕ3 π3

?

|= ϕ...

π... π...
?

|= ϕ0 π...
?

|= ϕ1 π...
?

|= ϕ2 π...
?

|= ϕ3 π...
?

|= ϕ...

Figure 4.2: Vector-Space Matrix of Traces and Temporal Features

Matrix representing traces and their respective satisfaction of LTL features. Formulas are
represented on the horizontal axis, and traces from the parent set are represented on the

vertical axis. This matrix is later used as input for traditional clustering algorithms.

4.1.4 Cluster Discovery

Given our binary matrix representing traces and their respective entailment of LTL

specifications, we now have the flexibility to identify clusters according to traditional

4.1. METHODOLOGY 27

unsupervised algorithms. We allow the selection of algorithm to be chosen as a

parameter, currently offering agglomerate hierarchical clustering and k-means, but

any generic algorithm is feasible. These current algorithmic offerings allow the user

to choose the quantity of clusters via k in k-means, or let the algorithm optimally

determine k as is the case for agglomerate hierarchical clustering.

4.1.5 Delineation via Conjunct LTL Features

As the final step in our approach, the discovered clusters are compared with the LTL

features to find minimal length sets of specifications that clusters uniquely entail. We

begin this step by first identifying which LTL features are relevant to which clusters

by collecting a set of features for each cluster that all traces in that cluster entail.

Since all traces in multiple clusters may entail the same formula, we must then use

the conjunction of relevant features to differentiate clusters. We formulate this as a

search problem, where the objective for each cluster is to discover a minimal length

set of features that is conjunctively entailed only by that cluster. Our full search

space for each cluster becomes 2n − 1 in size, where n represents the quantity of

features relevant to the given cluster. Fortunately, this search space can be generated

as an ordered iterable with set sizes growing with additional iterations. This means

that when iterating search in order, the minimal size goal is known to be achieved

with the first identification of a distinct set of LTL. Additionally, we allow the search

space to be limited via parameterization to a maximum acceptable set size, which

drastically reduces the size of the search space to
max conj∑

i=0

(
n
i

)
. Limiting the search

space also makes practical sense due to the loss in specification value that occurs due

to overfitted explanations with larger set sizes. When a set of LTL cannot be found

4.1. METHODOLOGY 28

within the parameterized reasonable search limits, this is acknowledged within the

output, and additional iterations of feature discovery are recommended to identify

features with more robust fits. Finally, in completion of search for conjunct LTL sets

for each cluster, the resulting explanations are returned as cluster definitions.

While the use of conjunct LTL features allows clusters to be perfectly explained

within reasonable search limits in most of our investigated domains, associated com-

plexity with this approach means that this may not always be the case. Additionally,

conjunct LTL has the ability to lead to larger explanations, which could represent

overfitting in some problem configurations. To address this, we also provide an ap-

proximation approach, where more compact explanations can be discovered at a more

predictable level of complexity, however accuracy becomes the cost.

4.1.6 Delineation Approximation with BayesLTL

As an approximation of cluster definitions, an approach using BayesLTL [39] to com-

pare discovered clusters can also be used. While this approximation approach tends

to lead to more compact explanations, the trade-off becomes accuracy of trace allo-

cations. Since BayesLTL is only designed to contrast two predefined input sets, using

the framework to contrast multiple predefined sets reduces the soundness of resulting

explanations. To expand the capacity of BayesLTL to account for more than two

defined candidate groups of traces, we consider two unique methods, one-versus-all

and pairwise analysis.

Our one-versus-all method approaches comparison by simply concatenating all sets

of traces into a single set excluding a selected set-of-interest. BayesLTL’s traditional

functionality is then used to infer relevant contrastive explanations for those two sets.

4.1. METHODOLOGY 29

The resulting specification is stored, and this process is repeated for each cluster.

This results in k evaluations of BayesLTL being conducted to achieve k contrastive

explanations, where each explanation describes one cluster. As an example of this one-

versus-all approach, if three clusters πA, πB, and πC are discovered within π, we derive

BayesLTL explanations for all pairs in {(πA, πB ∪ πC), (πB, πA ∪ πC), (πC , πA ∪ πB)}.

This results in the following cluster definitions: π′A = {π : π |= ϕπA,π¬A
}, π′B = {π :

π |= ϕπB ,π¬B
}, and π′C = {π : π |= ϕπC ,π¬C

}.

Alternatively, our pairwise method approaches comparison by inferring LTL spec-

ifications via BayesLTL from all possible unique pairs of clusters. This results in
(
k
2

)
specifications, where each cluster is defined by its entailment (or lack of entailment) of

k−1 specifications. As an example of this pairwise approach, we derive BayesLTL ex-

planations for all pairs in {(πA, πB), (πA, πC), (πB, πC)}. This results in the following

cluster definitions: π′A = {π : π |= ϕπA,πB ∧ϕπA,πC}, π′B = {π : π |= ¬ϕπA,πB ∧ϕπB ,πC},

and π′C = {π : π |= ¬ϕπA,πC ∧ ¬ϕπB ,πC}. π′A then represents the traces that satisfy

both ϕπA,πBand ϕπA,πC , π′B represents the traces that satisfy ϕπB ,πC , but not ϕπA,πB ,

and π′C represents the traces that dissatisfy both ϕπA,πC and ϕπB ,πC .

4.1.7 Parameterization

k: Specified Number of Clusters

The k parameter allows the user to determine the quantity of clusters to be discovered.

This parameter also currently determines the clustering algorithm to be used; if k is

not specified, agglomerate hierarchical clustering is selected, however if k is specified,

k-means is used.

4.1. METHODOLOGY 30

limit: Quantity of LTL-Specification Features

The limit parameter determines the quantity of binary temporal features to be identi-

fied and used within the established vector-space. An example of a temporal feature

from the Blocks domain could be eventual : (clear object i), which can be true for

some traces, but false for others. Lower values of limit may lead to underfitting due

to insufficient information for cluster discovery. Larger values of limit provide the

clustering algorithm with greater insights, however search time for features will be

proportionately extended. The default value of the limit parameter is set at 200

because we identify values exceeding this threshold to be commonly associated with

successful explanations of all clusters using conjunct features. This will be discussed

further in Section 4.2.1.

sample prop: Sample Proportion to be Drawn from Parent Set

The sample prop parameter determines the proportion of traces to be randomly sam-

pled when subsets are created. For example, if a set containing 500 traces is clustered

and the sample prop parameter is set to 20%, a random subset of 100 traces will

be sampled at each iteration, resulting in contrastive explanations being generated

from two randomized sets of 50 traces. The default value of sample prop is set at

10%, which is supported by our evaluation in Section 5.2.4, where we evaluate the

representative strength of various sample sizes. While larger sample sizes tended to

provide greater representative ability, the magnitude of this effect was found to be

very small-scale, so a small sample size of 10% represents an opportunity for runtime

savings; when higher quality features are desired, runtime can be used as a tradeoff

via higher values of sample prop.

4.2. EVALUATIONS AND RESULTS 31

max conj: Maximum Set Size of Conjunctive LTL in Delineations

The maximum quantity of LTL conjunctions accepted within cluster explanations.

More importantly, this parameter limits the search space of LTL combinations. When

this parameter is inactive, the ordered explanation search space for each cluster is 2n−

1 in size, where n represents the quantity of LTL features that all traces in the given

cluster entail. Since this search space can quickly grow enormously large, limiting its

size is typically very important. The max conj parameter therefore allows the search

space to be limited to
max conj∑

i=0

(
n
i

)
in size. The default value for this parameter is set

at 3 to accommodate reasonable search limits in robust domains.

4.2 Evaluations and Results

Our evaluation begins by establishing a sample set of cluster sets identifying when

applying this procedure to our sample domains. We then use this sample set to mea-

sure the general effectiveness of this approach using both conjunctive LTL discovery,

as well as approximated cluster definitions. Next, we test the ability of off-the-shelf

clustering algorithms to describe our discovered clusters, followed by an analysis into

the discovery rate of LTL features. Finally, we explore the consistency of our pro-

posed approach by measuring the similarity of clusters discovered from our sample

sets.

4.2.1 General Effectiveness of Clustering/Delineation Process

To conduct a general analysis into the strength of our clustering and delineation

approach, we use our six sample domains and three vocabulary sizes across multiple

test iterations. For each of the 18 domain/vocabulary configurations in our evaluation

4.2. EVALUATIONS AND RESULTS 32

dataset, we cluster and delineate their respective traces 10 separate times to gain a

representative overview. Within this analysis, we use k-means clustering with a value

of 8 for k to allow for a uniform evaluation across all dataset configurations. After

identifying conjunct sets of LTL to represent cluster definitions, we measure clustering

performance according to LTL size and search success.

We measure LTL size according to Gaglione et al.’s definition using the quantity

of unique subformulas, discussed further in Section 2.2. Formulas that are very small

may be indicative of underfitting behaviour, while formulas that are very large may

represent overfitting. Seeking robust fit between mappings of formulas and sets of

traces, desirable formulas will be of a subjectively reasonable size, relative to the

domain, to adequately describe relevant temporal characteristics of problems. Next,

we define search success as the proportion of clusters accompanied by distinct LTL

definitions. For example, if 8 clusters are identified (as specified by k), but LTL

explanations are found for only 6 clusters, search success would be 75%. Higher values

of search success indicate more complete definitions of cluster-sets. By aggregating

these performance metrics for each of our investigated configurations, we assess our

algorithm’s general ability to accurately and precisely differentiate clusters of traces.

In analyzing LTL size among our sample sets, we evaluate the size of both the

temporal features used to cluster traces and the formulas used to explain the resulting

clusters. Table 4.1 describes the distribution of LTL size within cluster explanations

and feature sets from our sample domains and vocabulary sizes.

4.2. EVALUATIONS AND RESULTS 33

Domain |V |

LTL Size LTL Size
Cluster Explanations Vector Space Features

(10 Combined Sets of 8 LTL) (10 Combined Sets of 1000 LTL)
Min Med Max µ σ Min Med Max µ σ

Blocks
10 2 6 19 8.588 4.572 2 6 31 8.644 4.638
15 5 6 19 9.038 4.468 2 5 31 7.432 3.965
20 2 2 17 3.186 2.688 2 5 21 5.345 2.016

Gripper
10 2 5 16 5.287 3.082 2 6 25 7.334 3.556
15 2 5 19 5.588 3.578 2 6 31 6.962 3.420
20 2 5 19 5.138 2.841 2 6 25 6.780 3.390

Rovers
10 2 6 13 7.000 3.917 2 6 31 8.521 4.069
15 2 6 25 7.237 4.540 2 7 31 9.353 4.203
20 2 6 19 6.500 3.814 2 6 25 8.240 4.320

Satellite
10 5 6 19 8.250 3.814 2 13 31 11.659 3.914
15 2 6 19 6.987 3.123 2 11 37 10.497 4.291
20 2 6 13 6.388 3.124 2 6 25 7.894 4.055

TPP
10 2 6 13 5.450 3.511 2 6 31 8.802 4.495
15 2 5 19 5.688 4.145 2 6 31 7.957 4.294
20 2 5 19 5.175 3.438 2 6 31 7.828 4.396

Zeno-
Travel

10 2 6 19 7.850 3.911 2 7 25 9.181 4.161
15 2 6 13 6.612 3.366 2 6 25 8.309 4.096
20 2 6 17 5.775 3.268 2 6 25 7.834 4.074

Table 4.1: Size Analysis of Discovered LTL Describing Vector Space Clusters

Analysis of LTL specification size |ϕ| distribution using our LTL conjunction approach.
LTL size is measured according to the quantity of unique subformulas, as defined by

Gaglione et al. (Clusters lacking definitions are excluded from this calculation). Each row
reports the minimum, median, maximum, mean, and standard deviation of |ϕ| within the

10 combined sample sets of cluster explanations and combined feature sets of each
respective domain/vocabulary configuration.

4.2. EVALUATIONS AND RESULTS 34

By presenting the minimum, median, maximum, mean, and standard deviation

of specification size from each configuration, an understanding of size tendency can

be inferred. Addtionally, for a better understanding of LTL size using BayesLTL’s

[39] templates, example formulas (from our tree-based approach) and their respective

sizes can be viewed in Appendix B. An interesting observation within Table 4.1 is

the larger size of the features used to establish clusters, as compared to the LTL

used to explain clusters; in almost all domain/vocabulary size configurations, the

mean and median LTL size are larger for vector space features versus explanation

LTL. This is likely explained by the idea that vector space features probe higher level

temporal characteristics of smaller sample sets, where stronger fits can be discovered.

Alternatively, when evaluating features that are relevant to all traces within a cluster,

the more generalized formulas will be used.

Since search success will be highly depend on the quantity of features derived from

the feature discovery process and used in clustering, we evaluate search success with

respect to a variety of feature-set sizes. For each of our six experimental domains

and three vocabulary sizes, we begin by establishing 10 feature sets of 1000 unique

specifications through our feature discovery process. For each feature set, we then

take the first specifications for values in {10n : n ∈ Z+, i < 101} and cluster and

delineate traces according to those features, repeating 10 times. We then measure

search success amongst these clusters, average the results amongst feature sizes, and

plot search success with respect to the quantity of features used.

Examples of the resulting cluster-set-defining formulas from each domain can be

viewed in Appendix A. An interesting observation within these example formulas is

the fact that conjunction is rarely required. Within examples from our simulated

4.2. EVALUATIONS AND RESULTS 35

evaluation domains, single elements of feature sets were capable of distinguishing

clusters most of the time, which is a strong indication of the effectiveness of our feature

discovery process. This also represents a mitigating argument against complexity

limitations, since single features appear first in the search order.

Figure 4.3 presents search success versus quantity of features for the 18 configura-

tions in our evaluation dataset. For all configurations, with the exception of Blocks20,

search success appears to approach 100% as the quantity of features grows. This result

provides a very strong positive indication of success for our vector-space clustering

method because it effectively demonstrates the ability of our approach to consistently

discover and accurately describe clusters. To address Blocks20, it appears that search

success tends to stagnate around 75% for most feature sizes. While this may appear

problematic, 75% still indicates successful explanations for 6/8 of the discovered clus-

ters. Additionally, our selection of 8 for k was an arbitrary decision for experimental

consistency; perhaps there are only 6 natural clusters within the Blocks20 dataset.

These plots are also an important tool to assist in the selection of how many

feature to use when selecting the limit parameter. It appears that in most domains,

search success is consistently near 100% when the quantity of features exceed around

200. For this reason, we have also set the default value of the limit parameter to 200

to minimize feature discovery runtime, but maximize expected results. Overall, since

search success appears to approach 100% for 17/18 configurations, we can conclude

that our vector-space clustering method is capable of performing very strongly to

cluster and delineate traces as intended.

4.2. EVALUATIONS AND RESULTS 36

Figure 4.3: Conjuctive LTL Search Success Versus Quantity of Features Plots

Proportion of traces accurately and completely described by identified LTL features with
respect to the quantity of features used in clustering.

4.2.2 General Evaluation of Delineation Approximation Approach

Using the same clusters discovered previously in Section 4.2.1, we measure the ability

of our delineation approximation approach to explain clusters. Additionally, since we

propose two slightly different approaches to approximate cluster definitions, we con-

duct this evaluation on both approaches to gather an understanding of each method’s

4.2. EVALUATIONS AND RESULTS 37

strengths and weaknesses.

In order to assess the strength of these approaches, we use LTL size, in addition to

the introduction of a new metric, delineation accuracy. Since our clustering procedure

is independent from cluster approximation, there exists a threat of incompatibility,

where clusters could be discovered, but not described with full coverage. Additionally,

the possibility exists for traces to co-exist within multiple clusters, which we also view

as an error. To measure the size of this potential error, we establish a simple accuracy

metric, which quantifies the strength of the discovered differentiation by counting the

number of traces that do not perfectly fit into single formulae-defined clusters. This

error metric is formally defined as:

|{π : (
k∑
i=0

π |= ϕi) 6= 1}|

|π|
(4.1)

By evaluating and aggregating delineation accuracy and LTL size for the resulting

explanations of both the one-vs-all and pairwise approximation methods, the ability

of these approaches to define clusters was investigated.

In Table 4.2 LTL size measurements can be viewed for both the one-vs-all and

pairwise approximation approaches. From these measurements, it is clear that pair-

wise explanations tend to be smaller in most domains, measured by median and mean.

Standard deviation LTL size is also demonstrated to be smaller for the pairwise ap-

proach, leading to more consistent sizes of formulas. Interpreting these results, the

pairwise approximation approach should be preferred over the one-vs-all approach

when it comes to compact and consistent formula sizes. Another relevant compari-

son is the LTL size tendency of approximated explanations versus LTL conjunction

4.2. EVALUATIONS AND RESULTS 38

Domain |V |

LTL Size LTL Size
Pairwise Approximation One-vs-All Approximation

(10 Combined Sets of 28 LTL) (10 Combined Sets of 8 LTL)
Min Med Max µ σ Min Med Max µ σ

Blocks
10 2 2.0 19 3.525 2.084 2 5.5 13 4.938 2.931
15 2 6.0 16 5.700 2.869 2 3.5 13 4.188 2.682
20 2 2.0 19 3.043 2.155 2 5.0 37 5.237 5.323

Gripper
10 2 2.0 13 3.725 2.110 5 6.0 19 7.688 3.794
15 2 2.0 17 3.464 2.152 2 6.0 31 8.00 5.243
20 2 2.0 25 3.468 2.609 2 6.0 13 7.112 2.873

Rovers
10 2 5.0 13 4.218 2.412 2 7.0 25 10.225 7.165
15 2 5.5 19 5.075 3.499 2 6.5 25 9.775 5.528
20 2 5.0 19 4.714 3.401 2 6.5 25 8.225 5.253

Satellite
10 5 6.0 25 6.429 2.584 5 6.0 13 6.075 0.792
15 2 5.0 13 4.218 2.019 5 6.0 16 6.713 2.301
20 2 2.0 6 3.200 1.836 2 6.0 19 6.938 4.107

TPP
10 2 2.0 13 3.432 2.562 2 6.0 37 6.338 4.757
15 2 5.0 19 4.682 3.491 2 6.0 25 6.763 3.698
20 2 2.0 13 2.725 1.798 2 6.0 13 5.700 1.687

Zeno-
Travel

10 2 6 19 5.279 3.620 2 8.0 25 10.312 5.636
15 2 6.0 19 5.029 2.762 2 7.0 37 8.988 5.806
20 2 5.0 19 4.571 3.271 2 7.0 19 7.525 3.697

Table 4.2: LTL Size Analysis of Approximation Approaches

Analysis of LTL specification size |ϕ| distribution using our one-vs-all and pairwise
approximation approached. LTL size is measured according to the quantity of unique
subformulas, as defined by Gaglione et al.. Each row reports the minimum, median,

maximum, mean, and standard deviation of |ϕ| within the 10 combined sample sets of
cluster explanations and combined feature sets of each respective domain/vocabulary

configuration.

explanations. Comparing approximation LTL measurements in Table 4.2 to LTL

conjunction measurements in Table 4.1, we see a consistent size reduction in ap-

proximated explanations. This result makes sense since BayesLTL [39] is designed

to identify one compact formula, whereas our conjunction-based approach combines

4.2. EVALUATIONS AND RESULTS 39

multiple formulas together, leading to larger sizes.

Delineation accuracy can be viewed for both our pairwise analysis and one-versus-

all analysis in Table 4.3, where the average and standard deviation error rates are

reported.

Domain |V |
Delineation Error Rate

One-vs-All Pairwise
µ σ µ σ

Blocks
10 0.753 0.093 0.655 0.211
15 0.390 0.372 0.132 0.261
20 0.637 0.390 0.724 0.417

Gripper
10 0.564 0.206 0.168 0.259
15 0.379 0.334 0.123 0.147
20 0.441 0.424 0.190 0.203

Rovers
10 0.641 0.326 0.118 0.196
15 0.735 0.169 0.324 0.200
20 0.814 0.140 0.525 0.203

Satellite
10 0.888 0.262 0.336 0.215
15 0.725 0.242 0.061 0.130
20 0.900 0.096 0.000 0.000

TPP
10 0.723 0.240 0.371 0.197
15 0.730 0.178 0.659 0.103
20 0.555 0.147 0.294 0.206

Zeno-
Travel

10 0.772 0.197 0.373 0.152
15 0.836 0.126 0.338 0.222
20 0.797 0.191 0.798 0.098

Table 4.3: Delineation Error of Approximated Explanation Approach

Average and standard deviation delineation error using one-versus-all and pairwise
evaluation methods to differentiate clusters. Error is measured by the quantity of traces

that do not fit into exactly one cluster divided by the total quantity of traces. Delineation
error is formally defined in Equation 4.1.

As is clear by the measurements presented in this table, approximated explana-

tions can often fail to provide a complete representation of clusters. That being said,

the ability of these approximation approaches to accurately define clusters appears

4.2. EVALUATIONS AND RESULTS 40

to be differ significantly by domain; in some domain configurations, approximated

explanations are demonstrated as highly effective, while in others, unproductive. For

instance, using the pairwise approach, the Satellite20 domain measures 0% average

delineation error, but in ZenoTravel20, almost 80% average error is recorded. This

indicates that the success of our approximation process is largely dependent on the

uniqueness of input problems themselves. While this lack of success is clearly prob-

lematic in some domains, since delineation error is a reliable metric that is easy to

measure and comprehend, it can always be embraced to ensure clustering relevance

after all evaluations. Additionally, when analyzing the source of this error further,

we find that in many cases, error is derived mostly from one or two faulty contrastive

explanations, whereas the explanations of other clusters are more sound. For exam-

ple, within one of our samples from the rovers10 domain, the discovered cluster sizes

were {20, 32, 7, 10, 12, 8, 6, 5} prior to redefining clusters via LTL, however, they

became {19, 32, 1, 10, 12, 95, 6, 93} post-explanation. In this example, the measured

delineation error is 90%, however, it is clear that most of the error is derived from

two of the eight clusters. This means that, although delineation error is effective in

measuring absolute error, in many cases, the LTL discovered to redefine clusters may

be more effective than the delineation error metric presents them to be.

When evaluating error sources within our pairwise analysis, an interesting observa-

tion is that across all evaluation configurations, no traces appear in multiple clusters,

meaning 100% of the measured error is derived from traces that fit into no clusters.

Alternatively, within our one-versus-all analysis, error is observed consistently from

both sources, with the dominant source being traces existing in multiple clusters for

most configurations. This means that although an assortment of traces are left out

4.2. EVALUATIONS AND RESULTS 41

within most configurations using the pairwise approach, the identified clusters are

very strongly defined, as opposed to the one-vs-all approach where cluster definitions

are much weaker. Similar to our one-vs-all approach, we also identify a potential

misrepresentation that sometimes occurs, where delineation error is derived from one

or two clusters, and all other clusters are accurately defined.

Comparing our two approximation approaches to cluster explanations, it appears

that the pairwise method should be preferred over the one-vs-all method. This is

because in most domain/vocabulary configurations, resulting formulas tend to be

smaller in size, and lesser delineation error is reported when using the pairwise ap-

proach. Additionally, the increased strength of cluster definitions derived from the

pairwise method demonstrates it as the superior approximation option. When com-

paring our approximation-based approaches to our conjunction-based approach, the

tradeoff appears to be accuracy versus formula compactness. Overall, delineating

clusters via our approximation-based approaches can at times be strong and capa-

ble, but can also be unreliable in terms of accuracy. For accuracy purposes, our

LTL conjunction method should be preferred, however for conciseness or predictable

complexity, the approximation method may be the better option.

4.2.3 Can Off-the-Shelf Clustering Metrics Accurately Describe Cluster

Strength?

While off-the-shelf clustering evaluation metrics (requiring no ground truth) are ef-

fective in many contexts, they are designed to generalize the evaluation of clustering

quality. This means that their effectiveness can sometimes be limited within spe-

cialized applications. As such, we are interested in studying their effectiveness as a

4.2. EVALUATIONS AND RESULTS 42

measurement tool for the discovered clusters within our described methods. As the

most common metrics, we apply our analysis to the silhouette coefficient [38], the

Calinski-Harabasz index [15], and the Davies-Bouldin index [23]. These metrics are

discussed in greater depth Section 2.5.

To evaluate the applicability of these metrics, we propose the assumption that

clustering quality should improve with the amount of information provided as input

to the clustering process, at least initially. This amount of information is reflected

by the number of LTL features discovered prior to clustering, by which traces are

evaluated for entailment. When more information is provided to characterize the

behaviour of traces, clustering algorithms should be more equipped to discover like-

groups. It is important to note, however, that there may also exist a tradeoff that

occurs between improved insight and introduced noise. While every new feature may

on-the-surface be expected to improve clustering quality, it is possible that introduced

noise could also impair performance. That being said, if effective, we should expect

evaluation metrics to initially improve with the quantity of LTL features used, though

they may later tamper off.

To test this, we used the clusters derived in Section 4.2.1 to measure clusters ac-

cording to off-the-shelf methods using a variety of progressively larger feature sizes.

For 10 sets of clusters derived from feature set sizes in {10n : n ∈ Z+, i < 101}, qual-

ity was measured according the silhouette coefficient, the Calinski-Harabasz index,

and the Davies-Bouldin index, as discussed in Section 2.5. These measurements are

plotted in Figure 4.4.

4.2. EVALUATIONS AND RESULTS 43

Silhouette Coefficient Calinski-Harabasz Index Davies-Bouldin Index

Quantity of LTL Quantity of LTL Quantity of LTL

Figure 4.4: Evaluation Plots of No-Ground-Truth Clustering Metrics

Off-the-shelf metrics vs quantity of LTL features used in clustering. For each feature
quantity in {10n : n ∈ Z+, i < 101}, 10 unique feature sets are established, and metrics

across feature sets are averaged for each domain/vocabulary size configuration.

4.2. EVALUATIONS AND RESULTS 44

In Figure 4.4, we consistently observe declining measurements of the silhouette

coefficient and Calinski Harabasz index with increased feature quantities. We also

observe increasing measurements of the Davies Bouldin index. Each of these observed

trends appear to diminish marginally and occur for every domain/vocabulary size

configuration within our evaluation dataset. While higher values of the silhouette

coefficient and Calinski Harabasz index indicate higher quality clustering, and the

same is true for lower values of the Davies Bouldin index, our results represent a

trend towards the opposite for all three metrics.

Due to the consistent downward trend in measurements of clustering quality pre-

sented by these metrics with advances in feature information, it is unlikely that they

depict an appropriate assessment to inform feature selection. These results are likely

explained by the idea that there are probably several similarly correct allocations of

clusters, and the proposed selection within metric calculation is simply not meaning-

ful in the larger context. Additionally, when we increase the quantity of features,

the quantity of reasonable cluster allocations likely increase significantly in paral-

lel, which further harms the scores of these metrics. This does not mean that the

identified clusters are weak in any way, simply that there are an abundance of other

correct solutions. From these results, we infer that off-the-shelf clustering evaluation

methods are likely unsuitable for measuring the strength of clusters, considering the

uniqueness of the data we are using.

4.2.4 Approximating Discovery Rate of Temporal Features

When generating feature sets within Section 4.2.3, we also recorded the quantity of

new LTL specifications discovered at each iteration; we define new specifications at

4.2. EVALUATIONS AND RESULTS 45

a given iteration as the set of specifications discovered at the current iteration that

have not been previously discovered in past iterations. The quantity of new specifica-

tions discovered per iteration is of interest because it allows us to better understand

characteristics of the sample space. For example, a smaller discovery rate would likely

be indicative of lesser remaining unseen features. By observing the rate of feature

discovery for each of our sample domains and vocabulary sizes, and analyzing how

this rate varies with additional iterations, our objective is to gain insight into a funda-

mental component of our process. To evaluate the discovery rate of LTL statements,

we develop 10 feature sets of 1000 LTL statements for each domain/vocabulary size

configuration in our evaluation dataset, recording the quantity of new features discov-

ered at each iteration of BayesLTL[39]. For each iteration, we average the quantity

of new features discovered amongst the 10 sets and plot these values in scatter plots

along with linear trend lines in Figure 4.5.

4.2. EVALUATIONS AND RESULTS 46

Iteration Iteration Iteration

Figure 4.5: Evaluation Plots of LTL Rate of Discovery

Quantity of new specifications found per iteration of BayeLTL [39] search. Over the
development of 10 unique feature sets of 1000 features, we count new LTL discovered per

iteration and average this value across feature sets.

4.2. EVALUATIONS AND RESULTS 47

The rate of LTL discovery appears to decrease over increased iterations for all do-

main/vocabulary size configurations. This effect is especially exaggerated in configu-

rations such as Block10, where a diminishing marginal effect is also clearly observed.

For all configurations, an average of 9 or 10 features tend to be discovered within the

first several iterations and this number consistently trends downward with additional

iterations.

4.2.5 Similarity of Discovered Clusters Versus Quantity of Features

Since several instances of ground truth may exist within sets of traces, unique clusters

may be discovered for each occasion of our clustering process. Variance in cluster

discovery is not problematic, however the factors that influence this effect are of

interest to better expose the mechanics of our procedure. While there are several

factors that may influence variance of cluster discovery, we propose that the quantity

of LTL statements used within the process likely has the strongest impact. Since

feature sets of larger quantities are more likely to contain similar or identical features

than sets of lesser quantities, resulting clusters should also be more similar. To

test this hypothesis, we evaluated feature set sizes in {10n : n ∈ Z+, i < 101},

establishing new features 10 times and clustering traces according to those features

for each domain/vocabulary configuration within our evaluation dataset. Since we

are most interested in the resulting groupings of our primary clustering step, for the

purpose of this experiment, we evaluate clusters based on their definitions prior to

our explanation step. For each trace, we then grouped the 10 discovered clusters for

similarity analysis. We begin by evaluating similarity of two clusters of traces πa and

πb according to |πa∩πb|
|πa∪πb|

. Next, to measure similarity amongst multiple clusters, we

4.2. EVALUATIONS AND RESULTS 48

evaluate the similarity of all non-self mapping pairs of clusters and take the mean

of these values. After measuring the similarity all 10 clusters for each trace, we

then take the average of this similarity measurement for all traces. This similarity

analysis is conducted for each experimental feature set size and plotted for visual

understanding. Formally, the similarity of clusters can be represented as follows,

where πa and πb represent clusters of traces, m represents any given set of clusters,

and M represents the set of cluster sets corresponding with the clusters from each

feature set that each trace belongs to.

• Similarity of two clusters:

β(πa, πb) =
|πa ∩ πb|
|πa ∪ πb|

• Similarity of a set of clusters:

σ(m) =

|m|∑
i=1

|m|−1∑
j=1

β(mi, {m : mi 6∈ m}j)

|m|(|m| − 1)

• Similarity of all clusters per trace:

µ(M) =

|M |∑
i=1

σ(Mi)

|M |

Analyzing the similarity of our discovered clusters in Figure 4.6, it is evident that

clustering similarity does in fact increase with the quantity of features used; this

positive relationship between quantity of features and clustering similarity appears

4.2. EVALUATIONS AND RESULTS 49

consistent across all domains/vocabulary size configurations. As the quantity of fea-

tures becomes very large however, this curve tends to flatten out, meaning similarity

still increases with additional features, but the effect becomes less strong. These re-

sults are also indicative of consistency within the clustering step of our methodology,

as long as enough features are used. As more features are captured, the knowledge

provided to inform clustering becomes more similar, resulting in more uniform in-

stances of identified clusters. The only exception to this discovered trend appears to

be TPP10, where the similarity is seen to peak, tamper off slightly, then flatten out.

While it is unclear why this peaking behaviour is observed, we still observe a reduc-

tion in variance, which is consistent with our previously proposed explanation of more

uniform clustering instances, as a result of additional knowledge. Using these results

to inform parameterization of feature quantity, lesser variation should be expected

with larger values of the statement limit parameter. Therefore, if more unique results

are sought, perhaps in the event that multiple instances of clustering are conducted

with the same traces, a lesser quantity of features should be used.

4.2. EVALUATIONS AND RESULTS 50

Figure 4.6: Cluster Similarity Versus Quantity of Features Plots

Evaluations of cluster similarly amongst 10 features sets with respect to the quantity of
features used for each domain/vocabulary size configuration.

4.2. EVALUATIONS AND RESULTS 51

4.2.6 Conclusions

In this chapter, we introduced a novel trace clustering and delineation method that is

demonstrated to be both effective and accurate. Given a set of traces, this methodol-

ogy discovers a feature set of relevant LTL, clusters traces based on their entailment

of features, and finally delineates traces based on a search procedure that identifies

sets of features that all traces in a given cluster entail. Testing this approach on our

evaluation dataset of 18 domain/vocabulary size configurations, we see that success

rates approach 100% when sufficient feature quantities are used.

Two approximation methods were also introduced, which allow for more com-

pact formulas to be discovered for cluster delineation. While approximation tends to

comes at the cost of accuracy, our proposed delineation accuracy metric allows this

tradeoff to be fully understood when approximation is used. Next, we investigated

the effectiveness of off-the-shelf clustering evaluation metrics and determined that,

due to the likely abundance of similarly correct cluster allocations, these metrics do

not provide meaningful assessments.

Discovery rates of unseen temporal features were then evaluated within our feature

discovery process, where we found that the quantity of features found per iteration

tends to decrease near linearly. However, since multiple features are still discovered

per iteration after several hundred iterations, this indicates that there are likely several

additional formulas available to be found.

Finally, by clustering traces multiple times using varying sizes of feature sets,

and measuring the similarity of generated clusters, we determine that as feature

quantity increases, clusters become more similar at a marginally diminishing rate.

Overall, through experimentation within our diverse evaluation domains, our novel

4.2. EVALUATIONS AND RESULTS 52

trace clustering and delineation method is proven to be robust, accurate, and effective.

53

Chapter 5

Tree Discovery using Temporal Logic

Our tree-based clustering and delineation approach embraces a binary tree data struc-

ture to represent groups of traces and their respective explanations. In this chapter

we will begin by introducing the mechanics and procedures inside our methodology

that enable tree discovery. Next, we will explore our proposed approach in greater

depth within our evaluation and results by generating sample trees and measuring

the results of performance-probing tests. Overall, through extensive analysis, we

demonstrate tree generation as a robust and effective means to cluster and delineate

traces.

5.1 Methodology

Our tree-based methodology begins by identifying and proposing a solution to a

vital sub-problem, which is the identification of a procedure to accept a single set

of traces and produce contrastive LTL to split the set into two similar sized subsets.

To achieve this result, we propose a Monte Carlo approach in coordination with

BayesLTL [39], which seeks to maximize set-size balance. Our proposed solution

of this sub-problem then enables trees to be generated that automatically identify

5.1. METHODOLOGY 54

clusters and their respective explanations. By initializing a root node to contain our

problem’s input traces and recursing this sub-algorithm until the desired quantity

of clustered are found, this methodology is successful in discovering relevant clusters

from discrete time-series data.

5.1.1 Overview

While BayesLTL [39] has proven effective in generating contrastive explanations be-

tween sets of traces, it is limited to exactly two sets of traces with known identity

labels, referred to as positive and negative. If the quantity of sets is unknown and

identity labels are nonexistent, the generation of constrastive explanations between

sets of traces becomes much more challenging. In order to solve this problem, the

goal of our approach is to leverage the strengths of BayesLTL [39] through the novel

creation of a contrastive explanation tree. By initializing a tree with a root node

containing the set of all input traces, a subproblem can be isolated as automatically

identifying an LTL specification that optimizes a split of the traces within this node.

If a process is discovered to effectively split an arbitrary single set of traces, this

process can recursively be implemented to provide significant insights to explain the

differences between all nodes. The following approach will introduce a Monte Carlo

strategy to use BayesLTL [39] and effectively discover LTL specifications that split

single sets of traces. Additionally, once the recursive splitting process begins, op-

timal stopping criteria must be determined to minimize complexity and overfitting;

alternatively, the process would continue until only unique traces exist in the tree’s

terminal clusters. While default parameters have been defined to fit most use cases,

those parameters have also been exposed to the user to be customized for unique

5.1. METHODOLOGY 55

environments. An overview of this tree generation procedure can be seen in Figure

5.1, where tree growth can be understood as an iterative node-splitting process that

continues until user-defined parameters are reached.

Initialize Root with All Traces

Are any
Parameter

Limits Reached?
Return Tree

Discover LTL Specification via Monte
Carlo Splitting Process on Node

Containing Most Traces

Split Target Node via Discovered
LTL Specification

Yes

No

Figure 5.1: Flow Diagram of Tree Generation Process

Flow diagram of our tree generation process. Through targeting the node with the largest
quantity of traces and splitting it via our Monte Carlo approach, our algorithm seeks

balance to contrastively divide any given set of plan traces into two sets with an
accompanying temporal logic specification. By recursing this procedure until predefined

parameters are met, a tree of nodes representing clusters is defined and returned.

5.1.2 Tree and Node Structure

Our proposed delineation tree consists of nodes and edges that resemble a binary

tree data structure. The primary attribute that defines a given node is a set of

5.1. METHODOLOGY 56

π0

π1 = {π : π 6|=
ϕ0, π ∈ π0}

π2 = {π : π |=
ϕ0, π ∈ π0}

π3 = {π : π 6|=
ϕ1, π ∈ π1}

π4 = {π : π |=
ϕ1, π ∈ π1}

π5 = {π : π 6|=
ϕ2, π ∈ π2}

π6 = {π : π |=
ϕ2, π ∈ π2}

π7 =
{...}

π8 =
{...}

π9 =
{...}

π10 =
{...}

π11 =
{...}

π12 =
{...}

π13 =
{...}

π14 =
{...}

Figure 5.2: Structural Representation of Delineation Tree Format

A visual representation of the binary tree structure used within our delineation process.
Each node π represents a collection of traces sorted by entailment for each formula ϕ

down the tree.

internally stored traces. Non-terminal nodes also possess an LTL formula that is

catered to their respective traces and designed for delineation. By using a given

node’s LTL specification, traces within that node can be constrastively evaluated

based on entailment. This evaluation allows two new nodes to be created, whereby

traces are allocated into two subsets based on whether the formula is satisfied by

a given trace. These subsets of traces are initialized as new nodes, and this novel

process is recursively implemented and repeated until a tree is fully created. Once

the tree generation process is complete, the delineation of nodes can be analyzed

as a collective or in subsets of any size. By evaluating the shortest path between

any pair of nodes, the conjunction of LTL along the tree’s branches allows nodes to

be accurately differentiated and contrastively explained. See Figure 5.2 for a visual

representation of this tree structure, where the root node is denoted as π0. Expanding

from π0, the LTL specification ϕ0 is discovered, which allows nodes π1 and π2 to be

created. This node-splitting procedure continues to enable tree growth.

5.1. METHODOLOGY 57

5.1.3 Node Splitting Criteria

As the primary engine of tree generation, our approach relies on a node splitting

technique that is designed to efficiently discover contrastively differentiating LTL

specifications. Representing the primary sub-problem of cluster identification and

delineation, the challenge of this step is to automatically discover LTL specifications

that maximize information gain. Formally, we define information gain of a specifica-

tion ϕ, given node n, containing the set of traces π as:

1−

∣∣∣∣∣∣{π : π |= ϕ, π ∈ πn}
∣∣− ∣∣{π : π 6|= ϕ, π ∈ πn}

∣∣∣∣∣∣
|πn|

(5.1)

Specifications that demonstrate information gain of 1 are considered perfect, while

specifications with information gain of 0 are ineffectual. By maximizing information

gain, we maximize the balance of the resulting tree, leading to an optimally efficient

and concise data structure.

To discover specifications that maximize information gain, our technique embraces

the explanatory power of the BayesLTL framework [39]. Given the effectiveness of

BayesLTL to identify LTL specifications differentiating two groups of traces, the tool

can be used as an instrument to assist in the discovery of relevant splits. BayesLTL,

however, requires positive and negative labels for input traces. Therefore, given a sin-

gle set of unlabelled traces, the problem becomes identifying the optimal allocation of

traces into positive and negative subsets (π+ and π−), such that an LTL specification

can be discovered that maintains balance post-evaluation of entailment. Assuming a

balance of |πPositive| = |πNegative| = |π|/2 for even-sized sets and |πPositive| = b|π|/2c,

|πNegative| = b|π|/2c + 1 for odd-sized sets, the number of ways in which a cluster of

5.1. METHODOLOGY 58

traces can be arranged into two balanced groups is represented by

1

2

 |π|+ (|π| ≡ 2)

1
2
(|π|+ (|π| ≡ 2))

 (5.2)

This defined search space very quickly leads to combinatorial explosion. To combat

the complexity associated with this immense search space, we employ both sampling

and Monte Carlo search.

We first use random sampling without replacement to mitigate the complexity of

each search step. This means that instead of evaluating BayesLTL [39] on positive and

negative sets of size 1
2
|πn|, we reduce the contrastive evaluation to input sets of size

p
2
|πn|, where 0 < p < 1 represents the size of the sample proportion from the parent

set. We demonstrate the representative abilities of varying sample proportions in

Section 5.2.4, and allow this value to be adjusted as a parameter. By reducing search

step complexity through our use of sampling, search capacity is enhanced.

We iterate search according to a Monte Carlo approach, which is procedurally

shown in Algorithm 2, and represented as a flow chart in Figure 5.3.

5.1. METHODOLOGY 59

Algorithm 2: LTL Specification Search

Input: Parent set of traces πn
Parameters: Iteration limit max iter, Information gain threshold τ , Sample
proportion p

Output: LTL specification ϕbest
1: ϕbest ← None
2: for i = 0...max iter do
3: πsample ← random sample set of size p|πn| from πn
4: π+, π− ← random balanced split of πsample
5: for values of ϕ resulting from BayesLTL(π+, π−) do
6: if InfoGain(ϕ, πn) ≥ τ then
7: return ϕ
8: else if !ϕbest or InfoGain(ϕ, πn) > InfoGain(ϕbest, πn) then
9: ϕbest ← ϕ

10: end if
11: end for
12: end for
13: return ϕbest

5.1. METHODOLOGY 60

Initialize Set of Traces to be Split

Randomly Sample Subset of Traces from Initial Set

Randomly Split Subset into Two Equally Sized Subsets

Run BayesLTL [39] to Generate list of LTL Specifications

Select Specification that Maximizes Information Gain

Is Info Gain
Threshold
Reached?

Is Info Gain
Greater than

Previous Best?

Store New Best LTL Specification

Maximum
Iterations
Reached?

Return LTL Specification

No

Yes

Yes

No

Yes

No

Figure 5.3: Flow Diagram of Monte Carlo Splitting Process

A flow diagram of our Monte Carlo splitting process, designed to split candidate nodes of
traces into two new balanced nodes via the discovery of contrastive LTL. By conducting

iterations of BayesLTL [39] until a minimal information gain threshold is reach or a
maximum iterations parameter is reached, balance is sought amongst the two resulting

subsets established by a given split.

5.1. METHODOLOGY 61

Our proposed approach begins by sampling a subset of traces from the parent

set, as previously described. We then randomly split this subset into two equally

sized new subsets, labelling one positive and the other negative. Applying BayesLTL

[39] to these positive and negatively labelled sets of traces, we arrive at a list of

contrastive explanations, which each individually attempt to best describe variation

between the two groups. Using this list of discovered LTL specifications, we score

each formula on the information gain it offers to the parent set of traces. If a given

specification is found to provide information gain that is either perfect or is beyond

a parameterized threshold, the specification is accepted and the splitting process is

ceased for that node. Alternatively, the specification offering the highest information

gain is compared with the previous best, and the better specification is retained. This

entire process is repeated until a parameter representing the maximum permitted

quantity of iterations is reached, and the best found LTL formula is accepted. This

information gain-maximizing formula is then stored in the parent node and used as

a splitting mechanism to create child nodes.

5.1.4 Stopping Criteria

Without stopping criteria, the explanation tree would continuously grow until all

possible sets of unique traces are individually isolated as terminal nodes. While

this may be the desired outcome of some specialized problems, in most scenarios

this would represent overfitting. Not only would the results become less useful, but

the complexity of discovering so many explanations would also be quite significant.

In order to maximize the derived value of the explanation tree, default stopping

criteria has been defined as well as parameterized for user customization. The first

5.1. METHODOLOGY 62

important stopping criterion to define is if all traces in a given node are identical.

Continuing to branch from a node of entirely identical traces would lead to an infinite

loop of unsuccessfully attempting to find an LTL specification that splits the group,

then branching all traces in a random leftward or rightward direction. Alternative

stopping criteria that can be defined by the user, including a maximum number

of clusters, a maximum desired tree depth, a minimum quantity of elements and

minimum proportion of elements that must remain in each node. Details regarding

these criteria are discussed next.

5.1.5 Parameterization

The discovery of an explanation tree to contrast traces via LTL specifications is

effective in several simulated environments, however, the way in which the tree is

implemented has a strong influence on the power of its insights. For example, in

environments with fewer traces, it may be of interest to understand the differences

between each individual trace, but in environments with greater quantities of traces, a

similar approach would clearly lead to overfitting. While “one-size-fit-all” parameters

have been provided as default for baseline analysis, the ability to customize these

parameters has also been provided to the user. Although these default parameters

values are set to values that generally work well, to maximize the strength of a tree’s

insights in specialized domains, it is recommended that these parameters be carefully

chosen and optimized to best fit the characteristics of a given problem setting.

5.1. METHODOLOGY 63

k: Specified Number of Clusters

The k parameter allows the user to specify the quantity of terminal nodes for the

generated tree to contain. This is an optional parameter; if k is not specified, the

quantity of leaves will not be restricted.

max depth: Maximum Depth of Tree

The max depth parameter limits the depth in which the tree can grow. By default,

max depth is set to None, which allows the maximum depth of the tree to be uncon-

strained.

min prop: Minimum Proportion in Bottom Nodes

The min prop parameter establishes a minimum size, measured by the quantity of

traces held within, that terminal nodes are permitted to be relative to the size of the

tree’s root node. The default value of min prop is set at 10% to mitigate unnecessary

computation associated with calculating LTL specifications down to the single trace

level.

sample prop: Sample Proportion to be Drawn from Parent Set

The sample prop parameter determines the proportion of traces to be randomly sam-

pled in each Monte Carlo iteration. For example, if a target node contains 500 traces

and the sample prop parameter is set to 20%, a random subset of 100 traces will

be sampled at each iteration, resulting in candidate explanations being generated

from two randomized sets of 50 traces. The default value of sample prop is set at

10%, which is supported by our evaluation in Section 5.2.4, where we evaluate the

5.1. METHODOLOGY 64

representative strength of various sample sizes. While larger sample sizes tended to

provide greater representative ability, the magnitude of this effect was found to be

very small-scale, so a small sample size of 10% represents an opportunity for runtime

savings; when higher quality features are desired, runtime can be used as a tradeoff

via higher values of sample prop.

max iter: Monte Carlo Maximum Iterations

The max iter parameter controls the maximum quantity of iterations that will be

undertaken when searching for LTL specifications that balance a given split. Greater

values of max iter will correspond with better balanced splits, however this will come

at the cost of increased runtime. The default value of max iter is 10, which allows

balanced splits to be discovered for a wide range of problems.

verbose: Scope of Logging Output

This boolean parameter determines whether progress is logged to the user throughout

the generation of the tree. If verbose is set to True, LTL specifications and information

regarding discovered splits will be presented to the user live as they are discovered,

however if verbose is set to False, no information will be displayed. The default value

of the verbose parameter is set to True.

5.1. METHODOLOGY 65

random state: Random Number Generation

This parameter is used for the generation of random numbers within the cluster-

splitting process, and allows tests to be reproducible. The default value of ran-

dom state is None, which randomizes the initialization of the random number gener-

ation.

5.1.6 Evaluation Metrics

To analyze the quality and characteristics of a generated tree, a variety of customized

metrics have been considered. Since balanced trees are considered desirable, these

metrics are largely designed to quantify balance. While these metrics can be used to

evaluate independent trees by themselves, the metrics can also be used to contrast

different trees when manually examining best fit.

Average Depth

The average depth metric is calculated as the sum of depth of all nodes in a tree

divided by the total quantity of nodes. While average depth is a valuable measurement

to understand the structure of a single tree, it is limited when it comes to comparing

different trees to each other. Since trees can be initialized with root nodes containing

varying quantities of traces, the number of splits to obtain similar clusters can also

vary. However, when comparing trees with identical root nodes, the average depth

metric can be quite insightful.

5.1. METHODOLOGY 66

Worst Depth

The worst depth metric is evaluated by identifying the depth of the tree’s deepest leaf

node. The measurement of a tree’s worst depth represents the maximum quantity of

LTL specifications required to explain an identified cluster of traces. Similar to the

average depth metric, the worst depth metric is less valuable for comparing different

trees to each other, and offers greater value for understanding the structure of an

individual tree.

Average Depth to log2n Ratio

To better compare different trees to each other, the average depth of a given tree

can be represented in relation to its quantity of nodes (n). In order to do this, the

average depth can be divided by log2n to represent the balance of the tree. The

denominator of log2n is used because in a perfectly balanced binary search tree, most

nodes are at the bottom of the tree, leading to an average depth of approximately

log2n. This means that smaller values of the ratio are indicative of more balanced

trees, and perfectly balanced trees should demonstrate ratios converging to 1.

Worst Depth to log2n Ratio

The calculation of worst depth with respect to log2n is also an effective measurement

to account for tree size and compare the structures of various trees. For similar

reasons to evaluating log2n as the denominator under average depth, calculating the

ratio of worst depth to log2n provides insight into the least balanced component of

a given tree. Also similar to the average depth to log2n ratio, smaller values of this

ratio are indicative of more balanced trees.

5.2. EVALUATIONS AND RESULTS 67

Depth Variance

The depth variance metric is calculated by evaluating the variance of terminal node

depth within a given tree. Depth variance attempts to quantify the dispersal of

node-depths within a tree to provide insight into the tree’s structure.

5.2 Evaluations and Results

Our evaluation begins by generating a sample set of trees, and measuring the samples

according to relevant metrics, such as average node depth and aggregated information

gain. We then analyze the deeper mechanics of this method by first testing the effect

of node size on execution time. Next, the representative ability of LTL derived from

sample sets to balance the larger set is assessed via estimates of probability distribu-

tions. The value of additional exploration iterations is then evaluated, and finally, an

intelligent splitting approach is investigated to reduce iteration requirements.

5.2.1 General Effectiveness of Tree Generation

To evaluate the effectiveness and applicability of our delineation process, we analyze

our approach’s adaptability and scalability. To assess these attributes, we generated

20 trees for each domain/vocabulary size configuration in our evaluation dataset. An

example tree is presented in Figure 5.4 for a better understanding of what these trees

look like. Within Figure 5.4, however, we set the k parameter to 8 for compact-

ness, whereas we allow k to represent the quantity of traces for the purpose of this

experiment.

Post-generation, we then judged the strength of the discovered trees according to

balance and information gain metrics. Balance, which represents the efficiency of our

5.2. EVALUATIONS AND RESULTS 68

Figure 5.4: Example of a Generated Tree from Blocksworld Domain

Example tree generated from the blocksworld evaluation domain with a vocabulary size of
10. This tree was derived using a value of 8 for the k parameter. The to png() function
within our code’s Tree class allows visuals like this to be automatically created for any

discovered tree, providing a more intuitive understanding of trace allocation.

process to organize and differentiate traces, was calculated using average node depth.

Since high quality specifications minimize the quantity of splits required to isolate

traces, smaller values of average depth are desirable, as they are indicative of higher

quality specifications. When analyzing average depth of trees, it is important to note

they can both only be evaluated in contrast to trees with identical quantities of root

traces, as is the case within our presented experiment. Alternatively, the balance can

also be evaluated as a ratio of log2(n), where n represents the total quantity of nodes

in a tree, releasing the measurement from its context dependency, but the resulting

value is less intuitive to comprehend. We calculated information gain according to

Formula 5.1 for all nodes containing at least 10 traces in each tree, then averaged

these values for each individual tree, presenting the median tree. The minimum

node size of 10 traces was selected as a filter for our analysis of information gain as

averages should not be overshadowed and overstated by including easier splits of less

relevant nodes. By generating and evaluating several trees of diverse configurations,

the resilience of our algorithm to identify high quality specifications is demonstrated.

Table 5.1 summarizes the characteristics of the resulting trees generated to eval-

uate the efficacy of our approach. For comparison when analyzing these values, an

5.2. EVALUATIONS AND RESULTS 69

optimal tree initialized with 100 traces would have an average depth of 5.759. From

the recorded measurements, it is clear that our algorithm is capable of discovering

and differentiating clusters existing within a variety of unique domains associated

with diverse vocabulary sizes. In analyzing the median information gain of our evalu-

ation trees, we observe little impediment associated with higher-complexity problems.

This is also shown to translate successfully to median average depth, where measures

appear similarly small across all domains and vocabulary sizes. These observations

effectively demonstrate our algorithm’s ability to cluster and delineate traces in an

efficient manner.

5.2. EVALUATIONS AND RESULTS 70

Domain
(100 Traces)

|V |
Average Depth

(20 Trees)
Average Info Gain

(20 Trees), (|π| ≥ 10)
Med Mean Med Mean

Blocks
10 6.299 6.308 0.505 0.501
15 6.372 6.404 0.388 0.380
20 6.219 6.202 0.128 0.135

Gripper
10 5.789 5.792 0.860 0.867
15 5.995 6.009 0.729 0.726
20 6.382 6.381 0.622 0.618

Rovers
10 5.836 5.821 0.788 0.783
15 5.942 5.944 0.873 0.876
20 5.783 5.776 0.879 0.880

Satellite
10 5.789 5.788 0.911 0.921
15 5.810 5.811 0.844 0.847
20 5.783 5.797 0.879 0.873

TPP
10 5.779 5.784 0.897 0.898
15 5.789 5.787 0.891 0.893
20 5.799 5.796 0.888 0.893

Zeno-
Travel

10 5.779 5.781 0.898 0.899
15 5.784 5.784 0.897 0.895
20 5.779 5.779 0.899 0.895

Table 5.1: General Evaluation of Sample Trees

Performance results of 20 test cases for each of the listed domains and vocabulary sizes
|V |. Trees were generated using a sample proportion of 40%, an information gain

threshold of 80%, and a maximum of 10 iterations, isolating all unique traces as leaves.
Each row reports the median and mean of average node depth and average information

gain from the 20 samples of each respective domain/vocabulary configuration. For
reference, a perfect tree initialized with 100 traces and possessing maximal information

gain at every node, would have an average node depth of 5.759.

5.2. EVALUATIONS AND RESULTS 71

5.2.2 Analysis of Discovered Specifications

Our algorithm is capable of identifying high-information gain LTL specifications to

establish minimal-depth trees; however a more extensive analysis of those specifica-

tions is necessary to rule out unintended behaviour. For instance, it would likely be

problematic if only large specifications were identified because this would be indica-

tive of overfitting, mitigating the usefulness of discovered formulae. To investigate

the quality tendency of discovered specifications, we evaluate the size of the specifi-

cations within our sample trees; we measure size according to the number of unique

subformulas within a given expression, as defined by Gaglione et al. and discussed in

Section 2.2.

In Table 5.2 we present the resulting size measurements of specifications within our

20 evaluation trees for each domain/vocabulary configuration. These values demon-

strate our algorithm’s ability to identify low-complexity formulas corresponding with

a robust fit for each configuration within our test data. Histograms of these distribu-

tions can also be viewed in Figure 5.5.

5.2. EVALUATIONS AND RESULTS 72

Domain
(100 Traces)

|V |
Average LTL Size

(20 Trees), (|π| ≥ 10)
Min Med Max σ

Blocks
10 6.905 7.841 8.857 0.626
15 4.381 5.390 6.947 0.676
20 3.600 4.667 5.733 0.562

Gripper
10 5.357 6.942 8.357 0.765
15 6.933 8.036 9.063 0.742
20 7.125 8.092 10.222 0.744

Rovers
10 5.824 7.129 10.467 1.081
15 7.071 8.171 10.467 1.083
20 5.400 8.157 10.800 1.231

Satellite
10 6.266 7.633 10.231 1.104
15 4.643 6.829 8.692 0.712
20 5.214 6.379 8.067 1.009

TPP
10 6.423 8.100 10.307 1.104
15 4.643 7.031 11.214 1.601
20 5.214 6.893 9.286 0.935

Zeno-
Travel

10 5.857 9.033 11.400 1.407
15 6.308 8.136 10.357 1.180
20 4.923 7.833 9.786 1.085

Table 5.2: Size Analysis of LTL Within Evaluation Trees

Analysis of LTL specification size |ϕ| distribution within the test cases established in
Table 5.1. LTL size is measured according to the quantity of unique subformulas, as
defined by Gaglione et al.. Each row reports the minimum, median, maximum, and

standard deviation of average |ϕ| within the 20 sample trees of each respective
domain/vocabulary configuration, where robust fit is apparent.

5.2. EVALUATIONS AND RESULTS 73

LTL Size LTL Size LTL Size

Figure 5.5: Histograms Representing Distributions of LTL Size in Evaluation Trees

Histograms of LTL size distributions amongst evaluation trees from all
domain/vocabulary size configurations. Each histogram represents the distribution of LTL

size of combined formula sets of 20 trees. Only nodes containing 10 or more traces are
included within this analysis to ensure only relevant splits are evaluated.

5.2. EVALUATIONS AND RESULTS 74

An interesting observation within these histograms is a bi-modal tendency that

is apparent within some domains. This is likely due to the lower bound of LTL size

that is found whenever strong generalization must occur, in addition to a normal

distribution of LTL size when non-generalized splits can be identified. To provide

a clear understanding of the LTL specifications our process discovers, we present

example formulas in Appendix B. Another insightful finding in these measurements

is the tendency of LTL size to negatively correlate with vocabulary size in most

domains. This trend is likely due to the idea that higher complexity domains possess

greater quantities of natural ground truth to be found, which eases discovery.

5.2.3 Node Size Versus Splitting Time

Since our Monte Carlo node-splitting technique with randomized balanced subsets of

traces represents the primary sub-process behind our delineation method, the execu-

tion time performance of this step, with respect to the quantity of analyzed traces,

was of interest. We expected the execution time required to split a single node of

traces to increase with the quantity of input traces; however, the rate of growth defin-

ing this relationship was unknown. To approximate this rate of growth, we conducted

10 splits for each size |π| in {10n : n ∈ Z+, n < 11} of randomly sampled subsets of

traces, measuring execution time of each split. By plotting these data points for each

domain, the relationship between node size and splitting time can be visualized and

understood.

In Figure 5.6, we observe a near linear relationship between node size and split-

ting time within all six of the explored domains. This relationship emphasizes the

importance of our sampling step, since the time complexity of a single split appears

5.2. EVALUATIONS AND RESULTS 75

to grow continuously large.

Figure 5.6: Evaluation Plots of Execution Time Versus Node Size

The average execution time of splitting a node π of randomly sampled traces with respect
to the quantity of traces |π| over 10 splits for each value of |π| in {10n : n ∈ Z+, n < 11}.
Since scales of execution time differ relative to each domain, normalization is conducted

via xi−min(x)
max(x)−min(x) for plotting purposes.

5.2.4 Probability Distribution of Information Gain with Respect to Sam-

ple Size

Given a randomly sampled subset of traces of a larger set, it is of interest to derive the

probability distribution of information gain as a function of sample size. Intuitively,

larger sample sizes should have stronger representative abilities; however since runtime

is dependent upon the size of the input set, accepting fewer sampled traces may be

of better utility. We estimated this distribution by running 100 splits of sample

proportions in {0.02, 0.05, 0.1, 0.4, 0.7, 1} for each domain and analyzing the resulting

information gain.

As seen in Figure 5.7, sampling was shown to be highly effective and proved

5.2. EVALUATIONS AND RESULTS 76

capable of representing the population distributions.

Figure 5.7: Kernel Density Estimations of Information Gain Versus Sample Propor-
tion

Kernel density estimation (KDE) plots of information gain with respect to sample
proportion used when approximating split. Each domain subplot shows the KDE’s of 100

single-split iterations for each sample proportion in {0.02, 0.05, 0.1, 0.4, 0.7, 1}.

5.2. EVALUATIONS AND RESULTS 77

Within all six of the evaluated domains and across each of the tested sample

proportions, significant density was observed in the upper range of the information

gain spectrum. As would be expected, higher sample proportions tended to pro-

vide greater representative ability; however, the size of this effect was interestingly

small-scale. Within some domains, such as Satellite and TPP, we observe sampling

effectiveness with sampling sizes as small as 2%; within all domains, however, we

observe effectiveness with samples as small as 10%. This tiny performance cost of

using small sample sizes represents a strong opportunity for runtime savings within

complex domains.

5.2.5 Specification Exploration Time Utility

When searching for an LTL specification to split a given set of traces, the quantity

of exploration iterations permitted will impact the information gain of the resulting

split. Since iterations represent opportunities for better specifications to be found, the

quantity of iterations should positively correlate with the resulting information gain.

The rate at which information gain is improved per iteration is of interest because

iterations come at a cost of execution time. To investigate this tradeoff, we conducted

20 splits for each iteration limit value in {5i : i ∈ Z+, i < 11} for each evaluation

domain, recording execution times and discovered LTL. We also used a sample size

of 100% to consistently ensure maximal information was provided to the algorithm.

By analyzing the average information gain and average execution time of these splits

with respect to the iteration limit used for each domain, the curve of this relationship

can be approximated.

5.2. EVALUATIONS AND RESULTS 78

When increasing specification search iterations, we observe performance improve-

ments through measurements of information gain across all six evaluation domains.

However, with marginal increases, the size of observed information gain improvement

tends to decrease. This trend of diminishing marginal benefit of search iterations per-

sists across all experimented values of permitted iterations, while search time appears

to increase near-linearly. This means that although the cost of search time increases

at a constant rate, the marginal value received by incurring this cost decreases with

higher values of the parameter. This curve of diminishing marginal value can be

seen in Figure 5.8. This trend can likely be attributed to the idea that specifications

satisfying the information gain threshold do not always exist, or, for a variety of rea-

sons, may be less conducive to being found. Since our algorithm’s precondition for

early stopping is achieving a minimum score of information gain, if this milestone is

impossible to reach, all iterations will still be conducted, even if a globally optimal

specification has already been found.

5.2. EVALUATIONS AND RESULTS 79

Figure 5.8: Information Gain and Execution Time Versus Maximum Iterations Plots

The average information gain and average execution time with respect to permitted
maximum quantity of iterations over 20 sample splits for each test value and evaluation

domain. Splits were conducted using a sample proportion of 10% with an information gain
threshold of 100% to ensure maximal performance potential.

5.2.6 Intelligent Splitting Process

With complexity mitigation in mind, we investigated a process whereby splitting

criteria could be intelligently identified via the analysis of previous splitting attempts.

In this revised procedure, when a discovered specification fails to meet the information

5.2. EVALUATIONS AND RESULTS 80

gain threshold, we do not resample π+ and π− from πparent. Instead, we reestablish

π+ and π− as the subsets of traces that satisfy and dissatisfy ϕ, respectfully. We then

rebalance π+ and π− by randomly drawing traces from the majority set and inserting

them into the minority set. Our hope was that the sizes of these subsets would

converge over multiple iterations, leading to the desired information gain specified by

the threshold. An overview of this revised method can be viewed in Figure 5.9 and

procedurally in Algorithm 3.

Initialize Set of Traces to be Split

Randomly Split Initial Set into Two Equally Sized Sets

Run BayesLTL [39] to Generate list of LTL Specifications

Select Specification that Maximizes Information Gain

Is Information
Gain Threshold
Met or Other
Parameters
Reached?

Return LTL Specification

Move Randomly Selected Traces from
Majority Set to Minority Set to

Create Balance

Yes

No

Figure 5.9: Flow Diagram of Experimental Intelligent Splitting Process

Process flow diagram of our experimented intelligent splitting procedure. By substituting
our Monte Carlo approach for a subset re-balancing step, the objective of this revised

procedure is to mitigate complexity through a reduction in the quantity BayesLTL [39]
iterations.

When testing this revised process to split nodes of traces, we observed identical

5.2. EVALUATIONS AND RESULTS 81

Algorithm 3: Experimental Intelligent Splitting Algorithm

Input: Parent set of traces πn
Parameters: Iteration limit max iter, Information gain threshold τ , Sample
proportion p

Output: LTL specification ϕbest
1: ϕbest ← None
2: πsample ← random sample set of size p|πn| from πn
3: π+, π− ← random balanced split of πsample
4: for (i = 0...max iter) do
5: ϕ← LTL that maximizes InfoGain(ϕ, πn) from BayesLTL(π+, π−)
6: if InfoGainϕ,πn ≥ τ then
7: return ϕ
8: else if !ϕbest or InfoGain(ϕ, πn) > InfoGain(ϕbest, πn) then
9: ϕbest ← ϕ

10: end if
11: while (||π+| − |π−|| > 1) do
12: if |π+| > |π−| then
13: Randomly select trace from π+ and append to π−
14: else
15: Randomly select trace from π− and append to π+

16: end if
17: end while
18: end for
19: return ϕbest

formulas being discovered repeatedly until the maximum iterations were reached. We

observed this same pattern across all six of our evaluation domains, indicating a

clear lack of success. With no variety in the formulas being discovered, our revised

algorithm failed to learn, meaning the resulting information gain was equal to that of

the first identified formula. While this observed failure to learn rejects the proposed

method as a viable alternative, it is possible that the approach could be adapted and

improved to make learning feasible. This potential avenue for future work will be

discussed in greater depth within Section 7.3.

5.3. CONCLUSIONS 82

5.3 Conclusions

In this methodology, we proposed a new approach to discrete time-series clustering

and delineation, which embraces a tree structure to organize and differentiate traces.

By introducing a Monte Carlo approach in coordination with BayesLTL [39], we

proposed a strategy to split any set of traces into two similarly sized subsets via

contrastive LTL. Recursing this procedure, our methodology allows relevant LTL to

be discovered in the form of tree generation, where groups of traces are differentiated

via the conjunction of LTL along the tree’s branches.

Exploring the effectiveness of this approach within sample trees, we discover a

strong tendency towards balance, as measured by average depth, in addition to av-

erage information gain within the tree’s splits. We also measure the size of resulting

LTL to assess underfitting/overfitting, and conclude that robust fit is common within

all of our experiment domains.

Next, we discover a relationship between node size and splitting time, which pro-

vides strong rationale for our sampling step. Analyzing this sampling step further, we

estimate probability distributions of information gain with respect to sample sizes,

and discover sampling effectiveness with samples as small as 2% in some evaluation

domains, and 10% in all domains.

We then explore the value of marginal iterations when searching for LTL to split

a given set of traces, and discover and diminishing marginal relationship. Next, we

investigate an intelligent splitting approach designed to facilitate learning from prior

splitting attempts. Testing this revised approach, we establish key takeaways to

incorporate into future research of intelligent splitting processes.

Finally, we contrast the effectiveness of our two unique methodologies and discuss

5.3. CONCLUSIONS 83

the strengths and weaknesses of both approaches. Overall, we conclude that our

tree-based methodology is both effective and applicable in the context of discrete

time-series clustering and delineation.

84

Chapter 6

Related Work

To provide a better understanding of the contributions we have made, we will discuss

this thesis in the context of related work. We will begin by discussing time series pre-

dictability, followed by plan explanations, and LTL mining. Next, we discuss works

from the areas of contrastive explanations, and LTL inference via decision tree learn-

ing. Finally, policy summarization, and trace clustering in business process mining

will be explored. By discussing the similarities and differences between this thesis

and related works, our contributions to these unique areas will be better understood.

6.1 Time Series Data Predictability

A component of time series analysis that has garnered significant research interest

is the area of forecasting [22]. This is largely due to the business application of

decision making under uncertainty. While the motivation of this paper is not nec-

essarily rooted in forecasting, it is however focused on the identification of temporal

features within time-series data, which forecasting also attempts to capture from its

prediction-oriented perspective. One of the first statistical models to approach this

problem was introduced by Box et al. in 1970 through an method called autoregressive

6.2. PLAN EXPLANATIONS 85

integrated moving average (ARIMA). By examining past observations and evaluat-

ing lagged moving averages, ARIMA allows for future values to be predicted based

on the assumption that temporal structures will repeat themselves. While ARIMA

is effective in modelling trends within time-series data, it is very limited when it

comes to identifying seasonality. In order to better account for seasonality, an ex-

tension of ARIMA called Seasonal ARIMA (SARIMA) became common practice [6].

By using seasonal differencing, SARIMA transforms data into a stationary format

to be analyzed. In addition to ARIMA and SARIMA, there are a variety of other

widely-accepted classical forecasting methods available such as vector autoregressive

[34] and exponential smoothing methods [20]. More recently, however, forecasting

research has shifted towards the application and adaptation of modern AI tools such

as neural networks for the time-series prediction problem. For instance, the AR-Net

[64] model by Triebe et al., uses a feed-forward neural network approach to model au-

toregressive process dynamics. Other machine-learning approaches embrace recurrent

neural network designs to take advantage of their strong ability to model sequential

data [5, 59]. While the research objectives of this thesis and the area of forecasting

are different in nature, there are overlapping elements of interest, such as the identi-

fying features, rules, and system characteristics that are important to predictability.

LTL specifications learned from discrete time-series data offers potential to the area

of forecasting by discovering patterns that may repeat themselves in future scenarios.

6.2 Plan Explanations

As an alternative to traditional planning research which seeks to investigate the pro-

cess of identifying optimal plans from problems, the area of plan explanation seeks to

6.2. PLAN EXPLANATIONS 86

identify and describe characteristics of problems from plans. Through the analysis of

observed behaviour, the goal of plan explanation is to use abductive-reasoning to infer

the rationale behind observed actions to better understand why certain events occur

within plan traces. To make sense of observed actions, plan explanation research

focuses on automatically learning temporal properties that allow system behaviour

to be modelled, understood, and predicted.

The majority of prior works in the area of plan explanations are focused on de-

scribing a single set of plan traces. The analysis of one set of plan traces is similar

to this thesis in that it allows system behaviour to be better understood, however is

limited in scope because multiple sets of traces are not accounted for, as is the case

in this thesis. An area where plan explanations have been particularly relevant is the

setting of human-computer interaction [39]. This is because when plans are gener-

ated by computers, it is of significant benefit if they can be understood by humans in

order to encourage adoption and enable participation by humans. Seegebarth et al.

investigated this in 2012 with the intention of facilitating human-understanding of

the rationale behind plans via automatically generated explanations [56]. To do this,

they propose a formal approach where plan information is represented as first-order

logic formulae and explanations are represented as proofs within the resulting system.

Using a prototype interface, the real-time effectiveness of this system is demonstrated.

Similarly, in 2017, Magnaguagno et al. investigated plan explanations by developing

a cloud-based planning tool to assist new users in understanding and visualizing the

plan generation process when writing code [45]. By integrating code editing and

state-space visualization, Magnaguagno et al.’s tool called, “WEB PLANNER,” em-

phasised relationship visualizations between the domain, problem, and resulting plan.

6.2. PLAN EXPLANATIONS 87

In coordination with the user, the tool generates two visualizations. The first visual-

ization focuses on the explored state-space through a heuristic visual where cartesian

and radial tree depictions are used; the second visualization employs a “Dovetail

Metaphor” [46], which allows the user to view changing predicates throughout plan

execution. While both of these prior works successfully demonstrate their effective-

ness in describing the behaviour of plans through user-friendly interfaces, they lack

the provision of rationale regarding plan selection in the first place, and they require

expert interpretation for their value to fully be recognized. Our approach, in contrast,

is designed to provide insightful rationale regarding relationships between all plans

and can be interpreted fully with the basic understanding of LTL.

Alternative works have focused on explicable and predictable planning, where

generated plans are designed to be understood by humans naturally with less depen-

dence on additional tools. By operating on the idea that humans understand plans

by associating tasks with actions, Zhang et al. developed a learned model for the

labeling scheme of humans [68]. This model is then used by agents to synthesize

or choose plans that are computationally explicable and predictable for humans to

interact with. Similarly, in 2021, Seimetz et al. empirically study a method, where

users are asked to annotate examples as good or bad, and LTL formulas are learning

to extract plan preferences. Mixed-initiative planning is another method that has

been developed to improve human understanding of planning. In mixed-initiative

planning, plans are automatically revised based on user input. In 2018, Borgo et al.

introduced an approach that is implemented in the XAI-PLAN framework, where

humans are given the ability to suggest alternatives to plan actions and observe the

resulting outcomes [11]. By comparing the results of different actions, humans are

6.2. PLAN EXPLANATIONS 88

provided stronger intuitions regarding plan rationale.

Plan explanations are also relevant in the setting of goal recognition. By observing

an agent’s behaviour, the objective of goal recognition is to infer the agent’s plans

and goals. Expanding upon goal recognition, probabilistic plan recognition seeks to

infer a probability distribution over a set of possible goals. Ramı́rez and Geffner ex-

plored the topic of probabilistic plan recognition in 2010 using off-the-shelf classical

planners [53]. Ramı́rez and Geffner proposed an approach where this problem can be

efficiently addressed by calculating the cost of achieving a goal when complying to

the observations versus not complying. Sohrabi et al. also investigated this problem

in 2016 and discovered an extended approach to account for missing and noisy obser-

vations [60]. In settings where observations are unreliable, goal recognition becomes

a much more difficult problem, since particular observed actions of an agent can be

misleading in relation to the agent’s goal. To account for this, Sohrabi et al. define

two additional objectives in their approach to supplement the original plan costs,

then linearly optimizes all of the objectives. Using this approach, the researchers

successfully demonstrate the method’s increased effectiveness of plan generation in

most domains.

While each of the previously discussed works contribute significant value to the

domain of plan explanations, they all focus on establishing explanations based on

the perspective of a single model. Chakraborti et al. describes this as a “soliloquy”

approach that is “wholly inadequate in most realistic scenarios” [19]. Since the do-

main and task models of humans tend to differ significantly from that of AI systems,

Chakraborti et al. propose that plan explanations should instead be focused on dis-

covering the differences between these models, and they introduce a method where

6.3. MINING LINEAR TEMPORAL LOGIC SPECIFICATIONS 89

this can be approached as a model reconciliation problem [19]. By minimizing changes

made to the human’s model and specifying explanations in the form of model updates,

a model reconciliation approach can be effective in improving the completion of an

incomplete model. Our approach embraces a similar ideology, where we evaluate dis-

crete time-series data from the fundamental perspective that unique systems tend

to exist within subsets of a larger system. Chakraborti et al. propose that explana-

tions should be studied in light of differing models, and we seek to identify temporal

characteristics defining differing models within discrete time-series data.

6.3 Mining Linear Temporal Logic Specifications

Due to its modalities referring to time, LTL is capable of expressively and effectively

describing temporal patterns within time-series data. These patterns represent con-

siderable value because they can often provide insight into hidden dynamics within

systems that cannot be represented by traditional metrics such as plan costs. While

the value of describing time-series data with linear temporal logic is clear, the opti-

mal process in which specifications are identified is less defined. In 2017, Kasenberg

and Scheutz investigated the discovery of LTL specifications for agents planning in

Markov Decision Processes. By approaching this as a multiobjective optimization

problem, Kasenberg and Scheutz developed a process for mining globally persistent

specifications using state-based and action-based objective functions, and a notion of

“violation cost” [35]. Using these components, evolution-based algorithms can then

be employed to optimize LTL formulas represented as parse trees. Lemieux et al.

also explored the inference of LTL specifications in 2015 when they introduced a tool

called Texada, designed to extract specifications of arbitrary length and complexity

6.3. MINING LINEAR TEMPORAL LOGIC SPECIFICATIONS 90

[44]. Given a user-defined LTL property type template as well as a log of traces, Tex-

ada evaluates and outputs a set of LTL formulae representing all valid instances of

the property type valid on all of the traces. A template based approach was also em-

ployed by Shah et al. to infer task specifications using a probabilistic model based on

three prior distributions [58]. Shah et al.’s method introduces a domain-independent

likelihood function which only depends on the number of conjunctive clauses in a

candidate formula.

While each of these approaches are uniquely effective, they all focus only on the

identification of specifications that are entailed by all of the plan traces. Similarly,

the approaches outlined in this thesis are designed to identify LTL specifications that

entail plan traces, however an important differentiating aspect is that they focus on

specifications entailed by some, but not all sets of traces.

The task of mining accurate LTL specifications, however, only represents part of

the challenge because the interestingness of discovered LTL is equally important. To

evaluate interestingness, several unique metrics exist, however the most common are

called support and confidence, which were both introduced by Agrawal and Srikant

[7]. While support measures the frequency of co-occurence of items appearing in a

dataset, confidence measures amount of times if-then statements are found to be true.

Cecconi et al. presents an excellent overview of many of these metrics in their 2021

paper, developed to facilitate the adaptation of these metrics to declarative process

mining [18].

Since we embrace the BayesLTL framework [39] as a subprocess of both of our

methodologies, we also indirectly use the same method to identify interestingness.

6.4. CONTRASTIVE EXPLANATIONS 91

BayesLTL selects suitable formulae and assigns interestingness scores based on sim-

plicity of LTL, designer template/proposition preferences, and syntactic similarity to

incumbent samples. We also use generic input preferences within our approach to

accept a wide variety of LTL templates and propositions.

6.4 Contrastive Explanations

The research area of constrastive explanations concerns the delineation of traces using

relative specifications, and its objectives are most similar to those within this the-

sis. Previous research on deriving contrastive explanations however, has been limited

in scope and tends to focus on contrasting only two sets of traces; the methodolo-

gies within this thesis allow for any quantity of sets to be contrasted, and these sets

are automatically identified. A novel approach within this domain was introduced

by Neider and Gavran in 2018, and proposed a SAT-based method to produce LTL

formulas that delineate two sets of traces [49]. By reducing the problem to a set

of satisfiability problems in propositional boolean logic, Neider and Gavran embrace

the power of optimized SAT solvers for this task. Another relevant approach that

adopts SAT-based methods was introduced in 2019 by Camacho and McIlraith [16].

By using SAT solving to search through a state-space of labelled skeleton formulae,

Camacho and McIlraith’s approach constructs an alternating automaton that can

be used to identify accurate LTL specifications [16]. While both of these discussed

approaches [49, 16] demonstrate success in identifying valuable contrastive specifica-

tions for problems with perfect traces, since they are designed to output only one

minimal-length LTL specification, they leave potential for failure when sets contain

imperfect traces. For example, in a situation where no single specification exists to

6.5. TEMPORAL LOGIC INFERENCE VIA DECISION TREE
LEARNING 92

delineate all traces from both sets, these approaches would be unsuccessful. To ad-

dress this problem and account for noise such as sensor issues and unintended human

behaviour in realistic environments, Kim et al. introduced a probablistic approach

in 2019 called BayesLTL [39]. Discussed more thoroughly in Section 2.3, BayesLTL

adopts a Bayesian inference approach to derive contrastive explanations between two

sets of input traces. Our approach embraces this Bayesian inference strategy, using

BayesLTL as a subprocess. However, instead of limiting the assertion of contrast

to two sets of plan traces, we evaluate contrast amongst k-sets. Our approach also

clusters input traces to establish suitable contrastive sets automatically, as opposed

to prior works, which require contrastive sets to be predefined by the user.

6.5 Temporal Logic Inference via Decision Tree Learning

Leveraging decision tree learning algorithms to infer temporal logic formulas is an area

that has also been previously explored [10, 14, 28]. As the most relevant approach in

this space, Gaglione et al. use decision tree learning in their Algorithm 2 to discover

contrastive LTL specifications between two sets of plan traces. Similarly, our tree-

based approach adopts a decision tree learning method for contrastive explanations;

however, our tree’s structure is also designed to hold sets of traces in nodes, rather

than only representing formulas. Our use of decision tree learning is focused on the

task of cluster discovery, conducted simultaneously with formula construction.

6.6 Policy Summarization

The topic of policy summarization focuses on globally characterizing the actions of

an agent in order to describe its policy to a user. A common method in which this

6.6. POLICY SUMMARIZATION 93

has been done is through the selection of a subset of state-action pairs, where the

challenge is determining the set of pairs that leads to the most important insights.

Amir and Amir explored policy summarization in 2018 through the lens of identifying

state-action pairs when they developed an algorithm called HIGHLIGHTS designed

to describe agent behaviour in different situations [9]. By using agent simulations,

HIGHLIGHTS can effectively extract interesting trajectories and assist humans in

understanding the capabilities of an agent. State-action pair identification was also

studied by Lage et al. in 2019, when they introduced an imitation-learning based

approach to extract and reconstruct an agent’s policy [42]. Additionally Lage et al.

discovered that in order to produce high-quality reconstructions, it is important for

the model used during summarization to be the same as the one used during recon-

struction. Our approach to discrete time-series clustering within this thesis is also

designed to analyze system behaviour according to variations defined by unique sit-

uations. However, instead of summarizing this behavior in the form of policy, the

objective of our model is to identify these unique situations from raw trace data and

provide differentiating criteria.

Another tool that can be used for the task of policy summarization is the notion

of abstraction. In abstraction-based approaches, the goal is to present the agent’s

policy at a high-level, such that all details that are not directly important are left

out. Topin and Veloso investigated an abstraction-based approach in 2019 in the

area of explainable deep learning by introducing Abstracted Policy Graphs [63]. By

explaining the decisions of an agent in the context of expected future transitions,

Topin and Veloso’s Abstracted Policy Graphs provide significant insight into agent

policy using only a learned value function as well as observed transitions. Another

6.6. POLICY SUMMARIZATION 94

novel approach focused on abstraction was formalized in 2020 by Sreedharan et al..

Through the derivation of analytically computed landmarks, Sreedharan et al. use

the ordering of these landmarks to summarize policies for Stochastic Shortest Path

Problems [62]. These temporal abstractions are then demonstrated by Sreedharan

et al. to provide high-level overviews of agent policy.

Although similar to abstraction-based methods, other works approach policy ex-

planation by establishing mappings to interpretable terms. Hayes and Shah explored

this strategy in 2017 with the goal of synthesizing the control logic of robots for

humans to understand [32]. By using a composition of functions, Hayes and Shah’s

approach first identifies a question being asked and maps it to a template, then the

template is resolved to a relevant set of states, summarized concisely according to

relevant attributes, and finally mapped to natural language for the user. Another

insightful contribution in the realm of mapping to interpretable terms was developed

by Koul et al. in 2018 when they explored policy summarization for recurrent neu-

ral networks (RNNs) [40]. Koul et al.’s novel technique called Quantized Bottleneck

Insertion is designed to learn finite policy representations of the continuous-valued

memory vectors and observation features within RNNs. Using this approach, Koul

et al. effectively demonstrate improvements in model interpretability via learned pol-

icy representations. Similarly, our approach to discrete time-series clustering empha-

sizes interpretablity by using policy-like rules to differentiate vectors, however, we

focus on identifying multiple sets of ruled based on recorded behaviour, rather than

the analysis of a single model.

6.7. TRACE CLUSTERING IN BUSINESS PROCESS MINING 95

6.7 Trace Clustering in Business Process Mining

Prior to the age of computers, workflow models were used by organizations to visu-

ally explain workflow processes. This traditional approach to workflow management

involved manual generalizations of process models representing idealistic views of op-

erational systems and attempted to continuously improve them over time. A focus on

the reengineering of processes was sparked in 1993 by Hammer and Champy through

their book titled “Reengineering the Corporation: A manifesto for Business Revolu-

tion” [31], which emphasized the notion of radically changing processes by manually

analyzing time-series data to identify operational inefficiencies. The integration of

technology with process management, called process mining, however, represents the

most significant advancement in the field. According to Aalst, a pioneer in the field,

“process mining bridges the gap between traditional model-based process analysis

and data-centric analysis techniques such as machine learning and data mining” [2].

Process mining has since demonstrated significant success in many domains using

time-series data extracted from real events to map the actions of agents to business

processes [2]. By using process mining techniques, the potential is created within orga-

nizations to improve operational efficiencies by identifying redundancies and seeking

routes of less resistance. A primary challenge within the field, however, is the lack of

structure characteristic of flexible real-world environments. Since business processes

in flexible environments tend to lack perfect structure, the analysis of behaviour

within these environments often leads to similarly unstructured results. Examples

of common problems associated with process mining in flexible environments include

excessive task nodes and relations, as well as “spaghetti” process models, such as in

6.7. TRACE CLUSTERING IN BUSINESS PROCESS MINING 96

Figure 6.1. In order to tackle this concern, researchers have approached trace clus-

tering from the broad categories of vector space clustering, context-aware clustering,

and model-based sequence clustering.

Figure 6.1: Spaghetti Process Model Example [1]

“Spaghetti process describing the diagnosis and treatment of 2765 patients in a Dutch
hospital. The process model was constructed based on an event log containing 114,592
events. There are 619 different activities (taking event types into account) executed by 266
different individuals (doctors, nurses, etc.)” [1]

Vector space trace-clustering methods focus on using attributes of event logs as

features for traditional clustering algorithms with the goal of discovering simpler

sub-models. One of the first papers to investigate vector space trace-clustering was

published by Greco et al. in 2006 and is titled “Discovering Expressive Process Mod-

els by Clustering Log Traces” [29]. Within the paper, Greco et al. propose a novel

process mining algorithm that uses k-means clustering to identify process-variants

and model them via distinct workflow schema. Provided to the k-means algorithm

as features were activities, as well as transitions within event logs. Building on this

approach in 2009, Song et al. proposed a new method based on log profiles that in-

corporated additional features as well as different clustering algorithms to improve

6.7. TRACE CLUSTERING IN BUSINESS PROCESS MINING 97

performance [61]. By organizing traces into profile vectors representing transitions,

case attributes, event attributes, and performance, the researchers demonstrated in-

creased effectiveness of clustering approaches to partition event logs. Similarly within

our first methodology, we embrace a vector-space approach to cluster traces. How-

ever, instead of using low level attributes such as case and event characteristics, we

focus our vector construction on binary temporal attributes that have proven to dif-

ferentiate some traces within a larger set.

Context-aware clustering methods adapt the way in which the control-flow of

context-aware information is handled. To do this, R.P. and Aalst proposed a method

in 2009 where traces are clustered based on generic edit distance [55]. In their ap-

proach, R.P. and Aalst define an automated way to derive costs of edit operations

substitution, insertion, and deletion. These costs are then used to ensure that the

context and ordering of traces are preserved when clustering based on edit distance.

Improving upon this approach, Bose and van der Aalst also propose a new approach

where a vector-space model is used with conserved patterns as its feature-set [12].

By defining patterns of maximal repeats, super maximal repeats, and near super

maximal repeats, context-aware feature sets are developed that allow traces to be

converted into vectors representing the number of occurrences of features. Within

our clustering methodology, we also embrace the identification of temporal patterns

to distinguish elements. Additionally, like Bose and van der Aalst, we embrace a

vector-space model using conserved patterns as a feature set for clustering. However,

different from Bose and van der Aalst where patterns are constrained to a finite set

of predetermined templates, the patterns our approach can use are limited only by

the expressive power of LTL.

6.7. TRACE CLUSTERING IN BUSINESS PROCESS MINING 98

Model-based sequence clustering methods approach trace-clustering from a unique

angle that borrows techniques generally used within the field of bioinformatics. In

bioinformatics, the concept of sequence clustering is often used to make sense of seem-

ingly meaningless sequences, such as automatically establishing families of proteins

from large protein datasets [24]. By using these established sequence clustering tech-

niques, model-based sequence clustering attempts to leverage their ability to operate

with less dependence on information about business logic that other clustering meth-

ods may inaccurately assume exist within event logs. In accordance with model-based

sequence clustering, Ferreira et al. introduced a trace-clustering approach in 2007,

where the researchers used first-order Markov models as well as the Expectation-

Maximization algorithm [25]. By applying this technique to human workflow and

database system trace settings, the researchers successfully demonstrate the ability of

their technique to recover original behaviour via an automated modelling approach.

As an extension of model-based sequence clustering, Weerdt et al. propose a new

method with a premise observation that existing trace-clustering methods “suffer

from a large divergence between the clustering bias and the evaluation bias” [67].

Weerdt et al.’s 2013 approach tackles this issue by attempting to find an optimal

distribution of traces amongst clusters that maximizes combined accuracy of the re-

sulting process models. By employing a top-down greedy algorithm, an active learning

inspired approach is applied to outperform existing trace-clustering methods.

While each of these approaches demonstrate various degrees of success establishing

clusters and separating traces into defined groups, they all lack the ability to explain

the differences between clusters. Since these methodologies exist within the context

of business process mining, the objective of their research is to provide better inputs

6.7. TRACE CLUSTERING IN BUSINESS PROCESS MINING 99

for process-model generation and process-analysis. Although the output clusters of

this thesis methodology could be used in a similar respect, the primary objective is

focused on the analysis and source of differentiation. In order to translate the findings

of these related works into contrastive explanations, several additional steps would

need to be undertaken, none of which would produce sound results. A simple option

within the field of process mining would likely be to translate the discovered clusters

into process-maps, then compare them manually to search for differences. However

this approach would be intuitively time-consuming and potentially lack accuracy. Al-

ternatively, there are existing frameworks designed to automatically compare process

models [3, 65, 48]; however their outputs are designed to provide a binary evaluation

of equivalence, which would offer little value in this context. As an improvement

to binary equivalence, Aalst et al. propose a methodology to evaluate the degree of

similarity on an ordinal scale from 0 (completely different) to 1 (identical) based on

causal dependencies and ordering [4]. Evaluating the degree of similarity between

clusters may represent an effective tool to measure the strength of delineation, but it

still fails to provide concrete specifications to define the differences.

100

Chapter 7

Conclusion and Future Work

7.1 Comparison of Vector-Space and Tree-Based Approaches

While our two unique methodologies are designed to tackle the same problem of

clustering and delineating discrete time-series data in the form of traces, they embrace

very different strategies. Both approaches accept identical inputs and produce similar

clear and concise definitions of identified clusters via LTL, but they achieve these

objectives through very different procedures. Comparing our two methods, these

diverse approaches each possess relative strengths and weaknesses, leading to varying

effectiveness based on their application.

Since our vector-space method embraces traditional clustering algorithms which

use ultra-efficient distance metrics to calculate dissimilarity, this method is much eas-

ier to scale, as compared to our tree-based approach. This integration with traditional

clustering algorithms via the creation of a standard input dataframe also allows a va-

riety of different algorithms to be efficiently tested for fit, promoting the adaptability

of our vector-space approach. On the contrary, our tree-based method relies entirely

on LTL splits via Monte Carlo iterations of BayesLTL to evaluate similarity, which

7.1. COMPARISON OF VECTOR-SPACE AND TREE-BASED
APPROACHES 101

means complexity will typically be greater with less room for reductions. The quan-

tity of features used can also be adjusted within our vector-space approach, which can

result in less calculations of BayesLTL, as desired. These characteristics are especially

important for scalability, considering the fact that iterations of BayesLTL represents

the bulk of complexity for both approaches. Overall, the scalability characteristics

of our vector-space approach demonstrate favorability towards this method when π

contains a very large quantity of traces to delineate.

Another important topic of comparison for our two approaches is their ability

to accurately account for and represent all traces within the input set π. Since our

tree-based approach clusters and delineates traces simultaneously via recursive splits

from a root node, all traces are always fully accounted for by nature. This also

tends to lead to more equally sized clusters, since at each node, the objective of

maximizing information gain is sought. On the other hand, our vector-space method

approaches clustering and delineation as a two-step process, where potential for mis-

alignment exists when transitioning steps. We identify this misalignment as rare

within our simulated evaluation domains, however, the possibility remains within our

vector-space method for clusters to be undefined via conjuntive LTL explanations,

or if approximation is used, traces may exist within multiple clusters or no clusters;

these negative outcomes are impossible in our tree-based approach. Our vector-space

method is also capable of continuing search past the first discovered definition, which

allows multiple accurate definitions to be discovered for each cluster, and vetted by

the user for interestingness; this cannot occur within our tree-based approach be-

cause cluster definitions are interdependent. Finally, with our tree-based approach,

the tree structure allows for greater interpretability, since formula derivation can be

7.2. SUMMARY 102

understood component-by-component via the path to the root.

Although both of our approaches achieve similar objectives, their differing strate-

gies lead to unique outcomes. If scalability is a primary consideration, our vector-

space method may be preferred due to its adaptability with feature set size, and its

integration with ultra-efficient traditional clustering algorithms. A desire for multiple

cluster explanations may also lead to choosing our vector-space method. However, if

consistency and completeness of cluster definitions are valued more, our tree-based

approach may be the better option. Ultimately however, since both approaches ac-

cept the same input and target the same solution, there may be benefit in establishing

variety by using both and accepting the most interesting solution for a given problem.

7.2 Summary

The objective of this research is to explore the topic of discrete time-series clustering

and examine its practical application within simulated environments. By establishing

two unique methodologies to cluster and delineate raw trace data, this thesis aims to

advance the ability of researchers to achieve powerful insights when analyzing discrete

time-series data.

In pursuit of these research intentions, our first methodology in Chapter 4, pro-

poses a vector-space clustering approach, which constructs context-aware temporal

features to identify like-groups of traces. Through the random sampling of smaller

subsets from the parent set and applying the BayesLTL framework [39], we iden-

tify representative contrastive LTL statements, by which traces can be evaluated for

entailment. Using traditional clustering algorithms, followed by the revisitation of

features via the identification of conjunctive sets of LTL to differentiate clusters, we

7.2. SUMMARY 103

demonstrate the effectiveness of this approach, as applied to six benchmark domains

and three unique vocabulary sizes from the International Planning Competition [26].

We furthermore introduce an approximation-based approach which uses BayesLTL to

explain clusters via pairwise or one-vs-all analysis, and is proven effective to identify

even more compact LTL statements at the slight cost of definition completeness.

In our second methodology in Chapter 5, we reimagine the trace clustering and

delineation challenge by proposing a novel tree generation technique which allows k

clusters to be discovered and described. By embracing a Monte Carlo node-splitting

approach, our algorithm seeks balance to contrastively divide any given set of plan

traces into two sets with an accompanying temporal logic specification satisfying one

of the sets. Recursing this procedure, we demonstrate the effectiveness of our ap-

proach to cluster and delineate plan traces from our evaluation dataset of benchmark

domains, allowing temporal logic specifications to evoke insight at each level of the

resulting tree. We also compare the effectiveness of our two methodologies and dis-

cuss the criteria that may lead to choosing one over the other. Finally, we highlight

the contributions of our two methodologies in the context of related work in Chapter

6.

By proposing two unique methodologies, this thesis addresses the difficult task of

discrete time-series clustering and delineation from two very different angles. In ex-

ploration of these distinct strategies, we discover high levels of performance associated

with both approaches in six simulated domains with three vocabulary sizes. Given

this thorough investigation, we conclude that both of our proposed methodologies are

capable of evoking unique and applicable insights, empowering researchers to observe

discrete time-series data from a novel lens.

7.3. LIMITATIONS AND FUTURE WORK 104

7.3 Limitations and Future Work

Within our tree-based approach, we identify scalability as a potential limitation based

on our findings in Section 5.2.3; investigating the relationship between node size and

splitting time, we discovered a positive near-linear connection between these two vari-

ables. This relationship is present for our sample domains in Figure 5.6. From this

finding, we can infer that as the quantity of traces becomes very large, the execution

time required to generate trees may also grow similarly. To address this concern,

in Section 5.2.6, we investigated the potential for an intelligent splitting process to

reduce complexity associated with tree generation; the process that we tested is also

depicted in Figure 5.9. Since iterations of BayesLTL [39] represent the bulk of com-

plexity within our approach, reducing the quantity of these iterations offers powerful

opportunity for efficiency improvements. While the intelligent-splitting method that

we tested failed to converge, it allowed us to identify some key characteristics to fa-

cilitate success in future work. From our exploration, we can deduce that in order

for an intelligent-splitting algorithm to be successful, it is likely that greater freedom

from the initial random allocation of traces is necessary. This could perhaps take the

form of randomized resets or other statistical methods to introduce noise. By strate-

gically introducing variability to learn from previous splitting iterations, we believe

that complexity can be reduced in future work.

Within our vector-space approach, limitation is represented via potential mis-

alignments between our clustering step and interpretability step. Since explanations

of clusters are independent from cluster identification, if conjunctive LTL cannot be

found within reasonable search limits, clusters will remain undefined. Additionally,

when using our approximation-based explanation method, traces may be allocated

7.3. LIMITATIONS AND FUTURE WORK 105

into multiple cluster or no clusters. To mitigate this source of error, future work

should investigate the integration of these two steps, such that misalignment is not

possible. Within our approximation approach, a potential line of future work to com-

bat this challenge could be the development of an iterable process that reduces or

eliminates error via more than one explanation attempt. Within our conjunctive LTL

approach, this error could be mitigated by employing strategic search to replace our

current size-ordered exhaustive method. For example, we identify that LTL specifica-

tions that are selected by our conjunctive search strategy tend to be smaller than the

central tendency of all LTL features; heuristics like this could be investigated and ap-

plied to improve search efficiency. Additionally, existing interpretability frameworks

that work simultaneously with model training and prediction could be applied to

promote a better understanding of resulting clusters. By innovating our vector-space

approach to minimize misalignment between the method’s two fundamental steps,

the potential for better cluster definitions can be created within future research.

Next, to account for situations where labels may exist within the input to the

algorithm, future work includes the adaptation of our methodology to enable this.

Within our vector-space approach, this adaptation could begin with feature gener-

ation via iterations of BayesLTL amongst samples from the labelled groups. The

clustering step could then be bypassed since labels already exist, then an identical

conjunctive search strategy could be employed to describe the clusters via LTL.

There also exists potential to combine the strengths of both approaches to estab-

lish even stronger insights. A possibility of this hybrid approach could be identifying

clusters via our tree-based method, then embracing feature generation and conjunc-

tive search from our vector-space approach to enhance interestingness by generating

7.3. LIMITATIONS AND FUTURE WORK 106

additional LTL explanations of clusters. Another possibility could be clustering traces

via our vector-space methodology, then embracing a tree structure to explain clusters.

Finally, while both approaches are shown to be highly effective in clustering and

delineating traces from the input dataset, it may be interesting to next use those

discovered explanations to evaluate addition traces conforming with the identified

systems. By applying a framework such as LtlFond2Fond [17], this could be formu-

lated as a planning problem, where the discovered LTL is incorporated as an extended

goal. Addition plans for each cluster could then be generated by using a top-k [37] or

diverse planner [36]. By evaluating additional plans that are consistent with cluster

definitions, additional insights could be discovered.

BIBLIOGRAPHY 107

Bibliography

[1] W. Aalst. Process mining: Discovering and improving spaghetti and lasagna

processes. In 2011 IEEE Symposium on Computational Intelligence and Data

Mining (CIDM), pages 1–7, 04 2011. doi: 10.1109/CIDM.2011.6129461.

[2] W. Aalst. Process Mining: Data Science in Action. Springer Berlin, 01 2016.

ISBN 9783662498507. doi: 10.1007/978-3-662-49851-4.

[3] W. Aalst and T. Basten. Inheritance of workflows: An approach to tackling

problems related to change. Theoretical Computer Science, 270:125–203, 01 2002.

doi: 10.1016/S0304-3975(00)00321-2.

[4] W. Aalst, A. Medeiros, and A. Weijters. Process equivalence: Compar-

ing two process models based on observed behavior. In Lecture Notes in

Computer Science, pages 129–144, 09 2006. ISBN 978-3-540-38901-9. doi:

10.1007/11841760 10.

[5] H. Abbasimehr, M. Shabani, and M. Yousefi. An optimized model using lstm net-

work for demand forecasting. Computers & Industrial Engineering, 143:106435,

2020. ISSN 0360-8352. doi: https://doi.org/10.1016/j.cie.2020.106435.

BIBLIOGRAPHY 108

[6] Q. Acton. Advances in Machine Learning Research and Application: 2013 Edi-

tion. ScholarlyEditions, 2013. ISBN 9781481670982.

[7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proc.

20th Int. Conf. Very Large Data Bases VLDB, 1215, 08 2000.

[8] M. O. Alassafi, M. Jarrah, and R. Alotaibi. Time series predicting of covid-19

based on deep learning. Neurocomputing, 468:335–344, 2022. ISSN 0925-2312.

doi: https://doi.org/10.1016/j.neucom.2021.10.035.

[9] D. Amir and O. Amir. Highlights: Summarizing agent behaviors to people. In the

17th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2018), Stockholm, Sweden, July 2018 2018.

[10] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta. A decision tree

approach to data classification using signal temporal logic. In Proceedings of the

19th International Conference on Hybrid Systems: Computation and Control,

pages 1–10, 04 2016. doi: 10.1145/2883817.2883843.

[11] R. Borgo, M. Cashmore, and D. Magazzeni. Towards providing explanations for

ai planner decisions. ArXiv, abs/1810.06338, 2018.

[12] R. P. J. C. Bose and W. M. P. van der Aalst. Trace clustering based on conserved

patterns: Towards achieving better process models. In S. Rinderle-Ma, S. Sadiq,

and F. Leymann, editors, Business Process Management Workshops, pages 170–

181, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-12186-

9.

BIBLIOGRAPHY 109

[13] G. Box, G. Jenkins, and W. U. M. D. of STATISTICS. Time Series Analysis:

Forecasting and Control. Holden-Day series in time series analysis and digital

processing. Holden-Day, 1970. ISBN 9780816210947.

[14] A. Brunello, G. Sciavicco, and E. Stan. Interval Temporal Logic Decision Tree

Learning, pages 778–793. Logics in Artificial Intelligence, 05 2019. ISBN 978-3-

030-19569-4. doi: 10.1007/978-3-030-19570-0 50.

[15] T. Caliński and H. JA. A dendrite method for cluster analysis. Communi-

cations in Statistics - Theory and Methods, 3:1–27, 01 1974. doi: 10.1080/

03610927408827101.

[16] A. Camacho and S. A. McIlraith. Learning interpretable models expressed in

linear temporal logic. In ICAPS, 2019.

[17] A. Camacho, E. Triantafillou, C. Muise, J. A. Baier, and S. A. McIlraith. Non-

deterministic planning with temporally extended goals: Ltl over finite and in-

finite traces. In Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence, AAAI’17, page 3716–3724. AAAI Press, 2017.

[18] A. Cecconi, G. De Giacomo, C. Di Ciccio, F. Maggi, and J. Mendling. Measuring

the interestingness of temporal logic behavioral specifications in process mining.

Information Systems, page 101920, 11 2021. doi: 10.1016/j.is.2021.101920.

[19] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati. Plan expla-

nations as model reconciliation: Moving beyond explanation as soliloquy. In

Proceedings of the 26th International Joint Conference on Artificial Intelligence,

IJCAI’17, page 156–163. AAAI Press, 2017. ISBN 9780999241103.

BIBLIOGRAPHY 110

[20] C. Chatfield. The holt-winters forecasting procedure. Journal of the Royal Statis-

tical Society. Series C (Applied Statistics), 27(3):264–279, 1978. ISSN 00359254,

14679876.

[21] A. Coman and H. Muñoz Avila. Generating diverse plans using quantitative

and qualitative plan distance metrics. In Proceedings of the Twenty-Fifth AAAI

Conference on Artificial Intelligence, AAAI’11, page 946–951. AAAI Press, 2011.

[22] F. Dama and C. Sinoquet. Analysis and modeling to forecast in time series: a

systematic review. CoRR, abs/2104.00164, 2021.

[23] D. Davies and D. Bouldin. A cluster separation measure. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, PAMI-1:224 – 227, 05 1979. doi:

10.1109/TPAMI.1979.4766909.

[24] A. Enright, S. Dongen, and C. Ouzounis. An efficient algorithm for large-scale

detection of protein families. Nucleic acids research, 30:1575–84, 05 2002. doi:

10.1093/nar/30.7.1575.

[25] D. Ferreira, M. Zacarias, M. Malheiros, and P. Ferreira. Approaching process

mining with sequence clustering: Experiments and findings. In Proceedings of the

5th International Conference on Business Process Management, BPM’07, page

360–374, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3540751823.

[26] M. Fox and D. Long. The 3rd international planning competition: Results and

analysis. ArXiv, abs/1106.5998, 2003.

[27] M. Fox, A. Gerevini, D. Long, and I. Serina. Plan stability: Replanning versus

BIBLIOGRAPHY 111

plan repair. In Proceedings of the Sixteenth International Conference on Inter-

national Conference on Automated Planning and Scheduling, ICAPS’06, page

212–221. AAAI Press, 2006. ISBN 9781577352709.

[28] J. Gaglione, D. Neider, R. Roy, U. Topcu, and Z. Xu. Learning linear temporal

properties from noisy data: A maxsat-based approach. In ATVA, volume 12971

of Lecture Notes in Computer Science, pages 74–90. Springer, 2021.

[29] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process

models by clustering log traces. Knowledge and Data Engineering, IEEE Trans-

actions on, 18:1010– 1027, 09 2006. doi: 10.1109/TKDE.2006.123.

[30] D. Grosse and R. Drechsler. Formal verification of ltl formulas for systemc

designs. In Proceedings of the 2003 International Symposium on Circuits and

Systems, 2003. ISCAS ’03., volume 5, pages V–V, 2003. doi: 10.1109/ISCAS.

2003.1206243.

[31] M. Hammer and J. Champy. Reengineering the corporation: A manifesto for

business revolution. Business Horizons, 36(5):90–91, 1993.

[32] B. Hayes and J. A. Shah. Improving robot controller transparency through au-

tonomous policy explanation. In 2017 12th ACM/IEEE International Conference

on Human-Robot Interaction (HRI, pages 303–312, 2017.

[33] Y. Jiang and D. Lan. Probability model of rock climbing recognition based on

information fusion sensor time series. EURASIP Journal on Advances in Signal

Processing, 2021, 11 2021. doi: 10.1186/s13634-021-00816-5.

BIBLIOGRAPHY 112

[34] S. Johansen. Statistical analysis of cointegration vectors. Journal of Economic

Dynamics and Control, 12(2):231–254, 1988. ISSN 0165-1889. doi: https://doi.

org/10.1016/0165-1889(88)90041-3.

[35] D. Kasenberg and M. Scheutz. Interpretable apprenticeship learning with tem-

poral logic specifications. 2017 IEEE 56th Annual Conference on Decision and

Control (CDC), pages 4914–4921, 2017.

[36] M. Katz and S. Sohrabi. Reshaping diverse planning. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(06):9892–9899, Apr. 2020. doi: 10.1609/

aaai.v34i06.6543.

[37] M. Katz, S. Sohrabi, O. Udrea, and D. Winterer. A novel iterative approach to

top-k planning. In ICAPS, 2018.

[38] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to

Cluster Analysis. John Wiley, 1990. ISBN 978-0-47031680-1.

[39] J. Kim, C. Muise, A. Shah, S. Agarwal, and J. Shah. Bayesian inference of linear

temporal logic specifications for contrastive explanations. In Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-

19, pages 5591–5598. International Joint Conferences on Artificial Intelligence

Organization, 7 2019. doi: 10.24963/ijcai.2019/776.

[40] A. Koul, S. Greydanus, and A. Fern. Learning finite state representations of

recurrent policy networks. CoRR, abs/1811.12530, 2018.

BIBLIOGRAPHY 113

[41] O. Kupferman. Sanity checks in formal verification. In C. Baier and H. Her-

manns, editors, CONCUR 2006 – Concurrency Theory, pages 37–51, Berlin,

Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-37377-3.

[42] I. Lage, D. Lifschitz, F. Doshi velez, and O. Amir. Exploring computational user

models for agent policy summarization. IJCAI : proceedings of the conference,

28:1401–1407, 08 2019.

[43] T. Latvala. Automata-theoretic and bounded model checking for linear temporal

logic. PhD thesis, Väitöskirja :, Espoo, 2005. Tiivistelmä ja 5 erip.

[44] C. Lemieux, D. Park, and I. Beschastnikh. General ltl specification mining

(t). In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 81–92, 2015. doi: 10.1109/ASE.2015.71.

[45] M. Magnaguagno, R. Pereira, M. D. Móre, and F. Meneguzzi. A tool to develop

classical planning domains and visualize heuristic state-space search. In 2017

Workshop on User Interfaces and Scheduling and Planning (UISP@ICAPS),

2017.

[46] M. C. Magnaguagno, R. Pereira, and F. Meneguzzi. Dovetail - an abstraction

for classical planning using a visual metaphor. In The 29th Florida Artificial

Intelligence Research Society Conference, 2016.

[47] R. Malladi and P. Dheeriya. Time series analysis of cryptocurrency returns

and volatilities. Journal of Economics and Finance, 45:75–94, 09 2020. doi:

10.1007/s12197-020-09526-4.

BIBLIOGRAPHY 114

[48] R. Milner and R. Milner. A Calculus of Communicating Systems. Springer Berlin

Heidelberg, 1980.

[49] D. Neider and I. Gavran. Learning linear temporal properties, 2018.

[50] T. Nguyen, M. Do, A. Gerevini, I. Serina, B. Srivastava, and S. Kambhampati.

Generating diverse plans to handle unknown and partially known user prefer-

ences. Artificial Intelligence, 190:1–31, 10 2012. doi: 10.1016/j.artint.2012.05.

005.

[51] A. H. Nury, M. S. Koch, and M. J. Alam. Time series analysis and forecast-

ing of temperatures in the sylhet division of bangladesh. In Proceedings of 4th

International Conference on Environmental Aspects of Bangladesh, 2013.

[52] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on

Foundations of Computer Science (sfcs 1977), pages 46–57, 1977. doi: 10.1109/

SFCS.1977.32.

[53] M. Ramı́rez and H. Geffner. Probabilistic plan recognition using off-the-shelf

classical planners. In Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence, AAAI’10, page 1121–1126. AAAI Press, 2010.

[54] K. Y. Rozier. Survey: Linear temporal logic symbolic model checking. Comput.

Sci. Rev., 5(2):163–203, May 2011. ISSN 1574-0137. doi: 10.1016/j.cosrev.2010.

06.002.

[55] J. C. B. R.P. and W. Aalst. Context aware trace clustering: Towards improving

process mining results. In Proceedings of the Ninth SIAM International Confer-

ence on Data Mining, 04 2009. doi: 10.1137/1.9781611972795.35.

BIBLIOGRAPHY 115

[56] B. Seegebarth, F. Müller, B. Schattenberg, and S. Biundo-Stephan. Making

hybrid plans more clear to human users - a formal approach for generating sound

explanations. In ICAPS, 2012.

[57] V. Seimetz, R. Eifler, and J. Hoffmann. Learning temporal plan preferences from

examples: An empirical study. In Z.-H. Zhou, editor, Proceedings of the Thirtieth

International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4160–

4166. International Joint Conferences on Artificial Intelligence Organization, 8

2021. doi: 10.24963/ijcai.2021/572. Main Track.

[58] A. Shah, P. Kamath, J. A. Shah, and S. Li. Bayesian inference of temporal task

specifications from demonstrations. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[59] S. Siami-Namini, N. Tavakoli, and A. S. Namin. The performance of lstm and

bilstm in forecasting time series. In 2019 IEEE International Conference on

Big Data (Big Data), pages 3285–3292, 2019. doi: 10.1109/BigData47090.2019.

9005997.

[60] S. Sohrabi, A. Riabov, and O. Udrea. Plan recognition as planning revisited. In

IJCAI, 2016.

[61] M. Song, C. W. Günther, and W. M. P. van der Aalst. Trace clustering in

process mining. In D. Ardagna, M. Mecella, and J. Yang, editors, Business Pro-

cess Management Workshops, pages 109–120, Berlin, Heidelberg, 2009. Springer

Berlin Heidelberg.

BIBLIOGRAPHY 116

[62] S. Sreedharan, S. Srivastava, and S. Kambhampati. Tldr: Policy summarization

for factored ssp problems using temporal abstractions. Proceedings of the In-

ternational Conference on Automated Planning and Scheduling, 30(1):272–280,

Jun. 2020.

[63] N. Topin and M. Veloso. Generation of policy-level explanations for reinforcement

learning. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):

2514–2521, Jul. 2019. doi: 10.1609/aaai.v33i01.33012514.

[64] O. Triebe, N. P. Laptev, and R. Rajagopal. Ar-net: A simple auto-regressive

neural network for time-series. ArXiv, abs/1911.12436, 2019.

[65] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in

bisimulation semantics. J. ACM, 43:555–600, 1996.

[66] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Pro-

ceedings of the VIII Banff Higher Order Workshop Conference on Logics for Con-

currency: Structure versus Automata: Structure versus Automata, page 238–266,

Berlin, Heidelberg, 1996. Springer-Verlag. ISBN 3540609156.

[67] J. Weerdt, S. vanden Broucke, J. Vanthienen, and B. Baesens. Active trace

clustering for improved process discovery. IEEE Trans. Knowl. Data Eng., 25:

2708–2720, 12 2013. doi: 10.1109/TKDE.2013.64.

[68] Y. Zhang, S. Sreedharan, A. Kulkarni, T. Chakraborti, H. Zhuo, and S. Kamb-

hampati. Plan explicability and predictability for robot task planning. 2017

IEEE International Conference on Robotics and Automation (ICRA), pages

1313–1320, 2017.

117

Appendix A

Vector Space Methodology

Cluster LTL Definition
0 atmostonce: ((on object d object a)), ((ontable object m))
1 atmostonce: ((on object f object c)), ((ontable object m))
2 sometime before: ((clear object a),(holding object m))
3 sometime before: ((holding object f),(holding object o))
4 atmostonce: ((on object f object c)), ((ontable object j))
5 sometime before: ((holding object m),(ontable object b))
6 atmostonce: ((on object g object l)), ((ontable object e))
7 atmostonce: ((holding object i)), ((ontable object l))

Table A.1: Blocks Examples of Clusters and LTL using Vector Space Method

Examples of LTL cluster definitions derived from the Blocks domain with a vocabulary
size of 15. See Table 2.2 for descriptions of templates.

Cluster LTL Definition
0 eventual: ((carry object ball23 object right)), ((carry object ball29 object right))
1 eventual: ((carry object ball32 object right)), ((carry object ball9 object right))
2 eventual: ((carry object ball11 object left)), ((carry object ball7 object left))
3 eventual: ((carry object ball8 object right)), ((carry object ball9 object right))
4 eventual: ((carry object ball11 object left)), ((carry object ball9 object right))
5 eventual: ((at object ball25 object roomb)), ((carry object ball2 object right)), ((carry object ball4 object left))
6 eventual: ((carry object ball28 object left))
7 eventual: ((carry object ball16 object left))

Table A.2: Gripper Examples of Clusters and LTL using Vector Space Method

Examples of LTL cluster definitions derived from the Gripper domain with a vocabulary
size of 15. See Table 2.2 for descriptions of templates.

118

Cluster LTL Definition
0 response: ((at rover rover2 waypoint waypoint5),(at rover rover2 waypoint waypoint1))
1 eventual: ((at rover rover2 waypoint waypoint10)), ((calibrated camera camera2 rover rover1))
2 response: ((at rover rover0 waypoint waypoint2),(empty store rover3store))

3
response: ((at rover rover2 waypoint waypoint10),(at rover rover0 waypoint waypoint8)),
((have soil analysis rover rover2 waypoint waypoint10),(empty store rover0store))

4
response: ((at rover rover0 waypoint waypoint10),(have image rover rover1 objective objective1 mode high res)),
((at soil sample waypoint waypoint0),(at rover rover1 waypoint waypoint6))

5 response: ((at rock sample waypoint waypoint8),(at soil sample waypoint waypoint0))
6 response: ((at soil sample waypoint waypoint0),(at rover rover3 waypoint waypoint1))
7 eventual: ((at rover rover0 waypoint waypoint5))

Table A.3: Rovers Examples of Clusters and LTL using Vector Space Method

Examples of LTL cluster definitions derived from the Rovers domain with a vocabulary
size of 15. See Table 2.2 for descriptions of templates.

Cluster LTL Definition
0 response: ((pointing object satellite5 object star15),(pointing object satellite5 object planet21))
1 response: ((pointing object satellite5 object star15),(pointing object satellite5 object planet21))
2 eventual: ((pointing object satellite5 object planet21))
3 sometime before: ((pointing object satellite6 object planet23),(pointing object satellite1 object phenomenon5))
4 sometime before: ((pointing object satellite6 object planet23),(pointing object satellite1 object phenomenon5))
5 eventual: ((pointing object satellite5 object planet21))
6 response: ((pointing object satellite5 object planet14),(pointing object satellite6 object planet23))
7 response: ((pointing object satellite5 object star15),(pointing object satellite6 object star3))

Table A.4: Satellite Examples of Clusters and LTL using Vector Space Method

Examples of LTL cluster definitions derived from the Satellite domain with a vocabulary
size of 15. See Table 2.2 for descriptions of templates.

Cluster LTL Definition
0 eventual: ((loaded goods goods2 truck truck4 level level1))

1
response: ((loaded goods goods10 truck truck1 level level0),(at truck truck1 depot depot1)),
((ready-to-load goods goods5 market market1 level level1),(loaded goods goods10 truck truck3 level level1))

2 sometime before: ((loaded goods goods10 truck truck2 level level1),(loaded goods goods2 truck truck3 level level1))
3 eventual: ((loaded goods goods7 truck truck2 level level1))
4 response: ((loaded goods goods7 truck truck1 level level1),(at truck truck1 market market3))
5 eventual: ((loaded goods goods1 truck truck2 level level1))
6 global: ((loaded goods goods3 truck truck2 level level0)), ((on-sale goods goods4 market market1 level level0))

7
response: ((loaded goods goods1 truck truck1 level level0),(on-sale goods goods5 market market1 level level0)),
((on-sale goods goods3 market market2 level level1),(on-sale goods goods10 market market1 level level1))

Table A.5: TPP Examples of Clusters and LTL using Vector Space Method

Examples of LTL cluster definitions derived from the TPP domain with a vocabulary size
of 15. See Table 2.2 for descriptions of templates.

119

Cluster LTL Definition
0 response: ((in object person2 object plane2),(in object person6 object plane2))
1 eventual: ((at object plane2 object city9))
2 response: ((at object plane2 object city11),(at object plane2 object city2))
3 response: ((at object plane5 object city5),(at object person11 object city4)), ((in object person6 object plane2),(at object plane4 object city1))
4 atmostonce: ((fuel-level object plane4 object fl1))
5 response: ((at object person2 object city10),(at object plane5 object city6))
6 response: ((in object person7 object plane2),(in object person5 object plane2))
7 stability: ((at object plane2 object city6))

Table A.6: ZenoTravel Examples of Clusters and LTL using Vector Space Method

Examples of LTL cluster definitions derived from the ZenoTravel domain with a
vocabulary size of 15. See Table 2.2 for descriptions of templates.

120

Appendix B

Tree-based Methodology

Size Blocks15 Example Formulas
2 eventual: ((on object m object g))
5 sometime before: ((clear object m),(on object g object f))
6 atmostonce: ((ontable object m))
11 sometime before: ((holding object j),(clear object g)), ((holding object m),(ontable object o))
13 atmostonce: ((holding object m)), ((ontable object o))
16 sometime before: ((clear object i),(clear object d)), ((clear object m),(clear object c)), ((clear object m),(ontable object g))
19 atmostonce: ((on object f object c)), ((on object l object f)), ((ontable object m))
25 atmostonce: ((on object a object k)), ((on object f object c)), ((on object o object f)), ((ontable object l))

Table B.1: Blocks Varying Sizes of LTL Examples using Tree-based Method

Examples of LTL specifications discovered within trees from the Blocks domain with a
vocabulary size of 15. See Table 2.2 for descriptions of templates.

Size Gripper15 Example Formulas
2 eventual: ((carry object ball8 object left))
5 eventual: ((carry object ball11 object left)), ((carry object ball6 object left))
6 response: ((carry object ball27 object right),(carry object ball32 object left))
7 eventual: ((carry object ball14 object right)), ((carry object ball22 object left)), ((carry object ball30 object right))
9 eventual: ((at object ball1 object roomb)), ((carry object ball4 object left)), ((carry object ball7 object right)), ((carry object ball9 object right))

11
eventual: ((at object ball2 object roomb)), ((at-robby object roomb)), ((carry object ball15 object left)), ((carry object ball27 object right)),
((carry object ball29 object right))

13 response: ((at object ball3 object rooma),(carry object ball32 object right)), ((carry object ball27 object right),(carry object ball9 object left))

15
eventual: ((at object ball16 object rooma)), ((at object ball28 object rooma)), ((carry object ball12 object right)),
((carry object ball15 object left)), ((carry object ball24 object left)), ((carry object ball28 object left)), ((carry object ball8 object right))

19
response: ((at object ball14 object rooma),(carry object ball22 object left)), ((at object ball22 object rooma),(carry object ball6 object left)),
((carry object ball25 object right),(carry object ball4 object left))

25
response: ((at object ball30 object roomb),(at object ball16 object roomb)), ((carry object ball11 object left),(at object ball1 object roomb)),
((carry object ball15 object left),(carry object ball21 object right)), ((carry object ball24 object left),(carry object ball7 object right))

Table B.2: Gripper Varying Sizes of LTL Examples using Tree-based Method

Examples of LTL specifications discovered within trees from the Gripper domain with a
vocabulary size of 15. See Table 2.2 for descriptions of templates.

121

Size Rovers15 Example Formulas
2 eventual: ((have soil analysis rover rover2 waypoint waypoint10))
5 sometime before: ((full store rover0store),(have image rover rover0 objective objective1 mode low res))
6 response: ((have soil analysis rover rover0 waypoint waypoint2),(have image rover rover1 objective objective1 mode low res))
7 eventual: ((at rover rover0 waypoint waypoint0)), ((at rover rover2 waypoint waypoint10)), ((at soil sample waypoint waypoint2))

11
sometime before: ((at rover rover0 waypoint waypoint0),(have image rover rover0 objective objective1 mode high res)),
((at rover rover0 waypoint waypoint7),(have image rover rover0 objective objective4 mode high res))

13
response: ((at rover rover2 waypoint waypoint4),(have image rover rover1 objective objective1 mode low res)),
((at soil sample waypoint waypoint8),(have soil analysis rover rover0 waypoint waypoint0))

19
response: ((communicated image data objective objective1 mode low res),(communicated soil data waypoint waypoint0)),
((empty store rover3store),(empty store rover2store)), ((have rock analysis rover rover3 waypoint waypoint2),
(communicated soil data waypoint waypoint8))

25
response: ((at rover rover2 waypoint waypoint4),(have rock analysis rover rover3 waypoint waypoint1)), ((at rover rover3 waypoint waypoint2),
(at rover rover3 waypoint waypoint4)), ((calibrated camera camera2 rover rover1),(empty store rover0store)),
((have soil analysis rover rover0 waypoint waypoint10),(at rover rover0 waypoint waypoint8))

Table B.3: Rovers Varying Sizes of LTL Examples using Tree-based Method

Examples of LTL specifications discovered within trees from the Rovers domain with a
vocabulary size of 15. See Table 2.2 for descriptions of templates.

Size Satellite15 Example Formulas
2 eventual: ((pointing object satellite5 object planet21))
5 sometime before: ((have image object phenomenon5 object spectrograph2),(pointing object satellite1 object phenomenon10))
6 response: ((pointing object satellite3 object star4),(pointing object satellite5 object planet21))

11
sometime before: ((calibrated object instrument13),(pointing object satellite5 object planet14)), ((have image object phenomenon10 object image1),
(have image object phenomenon16 object image1))

13
response: ((pointing object satellite1 object phenomenon5),(pointing object satellite1 object phenomenon16)), ((pointing object satellite1 object star18),
(have image object planet6 object spectrograph2))

16
sometime before: ((have image object planet21 object infrared0),(power avail object satellite4)), ((have image object star15 object thermograph4),
(calibrated object instrument13)), ((pointing object satellite6 object star3),(pointing object satellite3 object planet14))

19
response: ((have image object planet11 object image1),(pointing object satellite6 object star13)), ((pointing object satellite1 object phenomenon10),
(pointing object satellite1 object planet11)), ((pointing object satellite6 object planet21),(power avail object satellite0))

Table B.4: Satellite Varying Sizes of LTL Examples using Tree-based Method

Examples of LTL specifications discovered within trees from the Satellite domain with a
vocabulary size of 15. See Table 2.2 for descriptions of templates.

Size TPP15 Example Formulas
2 eventual: ((loaded goods goods8 truck truck2 level level1))
5 eventual: ((at truck truck2 market market4)), ((on-sale goods goods5 market market1 level level0))
6 atmostonce: ((at truck truck2 market market2))
7 eventual: ((at truck truck2 market market2)), ((loaded goods goods10 truck truck4 level level1)), ((on-sale goods goods10 market market2 level level0))

9
eventual: ((at truck truck1 market market3)), ((loaded goods goods1 truck truck3 level level0)), ((on-sale goods goods4 market market3 level level0)),
((ready-to-load goods goods5 market market1 level level1))

11
eventual: ((at truck truck4 market market4)), ((loaded goods goods7 truck truck1 level level1)), ((ready-to-load goods goods1 market market4 level level0)),
((ready-to-load goods goods6 market market2 level level1)), ((stored goods goods2 level level3))

13
response: ((ready-to-load goods goods1 market market4 level level1),(on-sale goods goods5 market market1 level level0)),
((ready-to-load goods goods6 market market2 level level1),(ready-to-load goods goods10 market market1 level level1))

16
sometime before: ((loaded goods goods10 truck truck3 level level1),(at truck truck2 market market3)), ((loaded goods goods8 truck truck1 level level1),
(ready-to-load goods goods9 market market3 level level0)), ((on-sale goods goods5 market market1 level level0),(loaded goods goods2 truck truck1 level level1))

19 atmostonce: ((loaded goods goods10 truck truck2 level level1)), ((loaded goods goods2 truck truck2 level level1)), ((on-sale goods goods9 market market3 level level2))

31
response: ((at truck truck2 market market2),(stored goods goods1 level level0)), ((at truck truck4 depot depot1),(loaded goods goods3 truck truck2 level level0)),
((loaded goods goods1 truck truck1 level level1),(on-sale goods goods2 market market4 level level0)), ((loaded goods goods1 truck truck3 level level1),
(ready-to-load goods goods3 market market1 level level0)), ((on-sale goods goods1 market market2 level level1),(stored goods goods10 level level0))

Table B.5: TPP Varying Sizes of LTL Examples using Tree-based Method

Examples of LTL specifications discovered within trees from the TPP domain with a
vocabulary size of 15. See Table 2.2 for descriptions of templates.

122

Size ZenoTravel15 Example Formulas
2 eventual: ((at object plane2 object city5))
5 eventual: ((at object plane5 object city4)), ((in object person1 object plane3))
6 response: ((fuel-level object plane4 object fl0),(at object plane5 object city1))
7 eventual: ((at object plane2 object city6)), ((fuel-level object plane2 object fl3)), ((in object person11 object plane2))
9 stability: ((at object plane2 object city2))

11
sometime before: ((in object person11 object plane2),(at object plane2 object city8)), ((in object person7 object plane3),
(at object person15 object city6))

13 response: ((at object plane5 object city6),(at object plane2 object city2)), ((fuel-level object plane1 object fl0),(fuel-level object plane3 object fl1))

16
sometime before: ((in object person11 object plane5),(at object plane5 object city6)), ((in object person4 object plane4),
(fuel-level object plane3 object fl0)), ((in object person7 object plane3),(at object plane2 object city3))

17 stability: ((at object plane2 object city2)), ((at object plane4 object city9))

19
response: ((at object person4 object city5),(fuel-level object plane4 object fl1)), ((fuel-level object plane5 object fl1),(at object person11 object city4)),
((in object person6 object plane2),(at object person13 object city8))

25
response: ((at object person10 object city11),(fuel-level object plane3 object fl1)), ((at object person13 object city8),(in object person13 object plane2)),
((at object plane5 object city5),(in object person4 object plane2)), ((in object person5 object plane2),(in object person1 object plane2))

Table B.6: ZenoTravel Varying Sizes of LTL Examples using Tree-based Method

Examples of LTL specifications discovered within trees from the ZenoTravel domain with
a vocabulary size of 15. See Table 2.2 for descriptions of templates.

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem
	Objective
	Contributions
	Organization of Thesis

	Background
	Discrete Time-Series Data
	Linear Temporal Logic (LTL)
	Contrastive Explanations
	Trace Clustering in Business Process Mining
	Off-the-Shelf Clustering Evaluation Without Ground Truth

	Data Collection and Overview
	Derivation of Evaluation Dataset

	Vector-space Clustering using Temporal Logic Features
	Methodology
	Overview
	Context-Aware Temporal Feature Generation
	Feature Mapping
	Cluster Discovery
	Delineation via Conjunct LTL Features
	Delineation Approximation with BayesLTL
	Parameterization

	Evaluations and Results
	General Effectiveness of Clustering/Delineation Process
	General Evaluation of Delineation Approximation Approach
	Can Off-the-Shelf Clustering Metrics Accurately Describe Cluster Strength?
	Approximating Discovery Rate of Temporal Features
	Similarity of Discovered Clusters Versus Quantity of Features
	Conclusions

	Tree Discovery using Temporal Logic
	Methodology
	Overview
	Tree and Node Structure
	Node Splitting Criteria
	Stopping Criteria
	Parameterization
	Evaluation Metrics

	Evaluations and Results
	General Effectiveness of Tree Generation
	Analysis of Discovered Specifications
	Node Size Versus Splitting Time
	Probability Distribution of Information Gain with Respect to Sample Size
	Specification Exploration Time Utility
	Intelligent Splitting Process

	Conclusions

	Related Work
	Time Series Data Predictability
	Plan Explanations
	Mining Linear Temporal Logic Specifications
	Contrastive Explanations
	Temporal Logic Inference via Decision Tree Learning
	Policy Summarization
	Trace Clustering in Business Process Mining

	Conclusion and Future Work
	Comparison of Vector-Space and Tree-Based Approaches
	Summary
	Limitations and Future Work

	Bibliography
	Vector Space Methodology
	Tree-based Methodology

