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Abstract

In the last decade, deep neural networks have given embodied agents many tools that

can extract information from environmental data. However, tasks such as reasoning

and long-term planning cannot be done effectively using deep neural networks. Sym-

bolic methods, such as automated planning, are still methods of choice for embodied

agents in most applications. The integration of a planning system with deep neural

networks seems to be the natural next step for embodied agent design. However,

many challenges from both the planning and deep learning side need to be solved for

such hybrid systems. This work proposes a neural-symbolic framework for construct-

ing embodied agents, capable of semantic navigation, that can take advantage of

both neural and symbolic algorithms. The framework uses neural networks for low-

level information extraction and automated planners for high-level reasoning. The

main challenges our approach addresses are converting traditional pansophical plan-

ners to egocentric perspectives and finding the appropriate factored representation

for environmental information discovered by such agents. The thesis has two main

contributions towards building a neural-symbolic embodied agents. Our first contri-

bution is presenting a method of converting classic pansophical planning problems to

egocentric alternatives. Secondly, we propose a spatial semantic graph structure to

store environmental information for autonomous object navigation.
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Abbreviations and Symbols

CNN Convolutional Neural Network.

EP Egocentric Planner.

ESE Egocentric Subset Extractor.

IER Iterative Exploration via Replanning.

PDDL Planning Domain Definition Language.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

SLAM Simultaneous Localization And Mapping.

SLG Semantic Location Graph.

STRIPS Stanford Research Institute Problem Solver.
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Chapter 1

Introduction

1.1 Motivation

In recent years, deep learning has dramatically impacted the development of Arti-

ficial Intelligence (AI). End-to-end differentiable neural networks have achieved re-

markable results in areas such as computer vision(CV), natural language processing

(NLP), and reinforcement learning(RL) [52, 46, 43]. Deep neural networks can pro-

cess and extract features automatically from large datasets. In contrast, symbolic AI

often relies on hand-crafted rules by human experts with domain knowledge. Deep

learning-based methods have come close to human-level performances in many tasks

for learning unstructured data such as images and natural language [52, 46]. Deep

RL systems such as AlphaGo and AlphaZero have achieved superhuman level perfor-

mances in games such as Go and Chess, where we traditionally associate with logic

and planning [43, 44]. One would assume deep neural networks could be suitable for

building intelligent embodied agents where an agent needs to explore and carry out

everyday human tasks. However, deep RL systems have rarely been used for em-

bodied agents applications in real-life settings. One of the main reasons being deep
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RL’s performance deteriorates quickly when the task has sparse rewards or requires

multi-step planning. Deep RL learns a policy through weights distributed in large

neural networks. Therefore knowledge of the world is often entangled with rewards

signals. Furthermore, the black-box nature of deep RL systems makes them difficult

to interpret, thus preventing them from deploying in many common applications [14].

Deep RL for embodied agents also require billions of sample steps generated through

training episodes, which makes them difficult to apply beyond virtual environments

[53]. Model-based RL such as Dreamer has been used to form world models in the

latent space [18]. The idea is for RL agents to learn world dynamics and plan their

actions according to the learned model. However, the latent space representation

entangles rewards with world dynamics without factorization, making them unsuit-

able for goal-oriented planning without clear rewards. Although these model-based

RL agents have shown performances on par with model-free methods in benchmarks

such as Atari, they have not demonstrated their superiority in solving tasks with

sparse reward and long-horizon reasoning.

Symbolic methods are designed to conduct long chains of reasoning. These sys-

tems tackle reasoning by constructing explicit states and rules in the symbolic space,

making them interpretable by human beings [9]. When a problem can be represented

as factored symbols, long-term reasoning tasks that are difficult for deep RL systems

can be trivial to solve using a generic search algorithm. However, the performance

of symbolic systems is often bottlenecked by how well we can ground unstructured

input into the correct factored representation.

Neural and symbolic methods appear to have distinct advantages that can comple-

ment each other’s shortcomings. However, in most of their history, machine learning
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and symbolic reasoning have been developed by distinct communities. With recent

advancements in deep learning, more and more attention has been given to the in-

tegration of symbolic and statistical methods [40]. Building hybrid systems that

can conduct symbolic reasoning with concepts acquired from unstructured data has

become a promising direction for embodied agent design. There are many open ques-

tions regarding building neural symbolic agents, yet little work has been done formally

to show the feasibility of such models. The cycle of perception and action requires

transferring information between statistical and symbolic representations. There is

also the question of what symbolic methods are suitable for such systems.

Motivated by the need for a formal framework for neural symbolic embodied

agents, we propose an object-centric hybrid approach that uses automated planning

techniques to reason over information grounded by neural networks. We test our ap-

proach on semantic navigation (or object navigation) tasks, one of the essential tasks

in embodied agent applications. We show the advantages of hybrid systems while

exploring the challenges of combining neural and symbolic methods.

1.2 Problem

To propose a framework for planning-based neural symbolic agents, we must address

egocentricity in classical planning methods while finding a suitable representation to

integrate planning with deep neural networks. Planning approaches work best when

the world is pansophical where that state of the world is fully known and observable by

an acting agent. However, in practice, embodied agents are primarily egocentric and

can only observe part of the environment. Thus the challenge is finding a way to take

account of egocentricity without losing the effectiveness of classic planning methods.
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The other problem is using the correct level of representation learned through a neural

network. There are often trade-offs between the amount of information that can be

represented and the interpretability of the system. Therefore, we need to decide

what level of representation is best suited for embodied agent tasks. We will discuss

challenges from both areas in the next sections.

1.2.1 Problems in Egocentric Planning

Automated planning is a branch of AI that allows intelligent agents to interact with

their environments to achieve certain goals. It has a long history in embodied agent

design and has shown successes in applications such as service and industrial robots

[25].Classical planning approaches assume the world is closed and all relevant infor-

mation is known in advance. However, this is not the case in many settings where

an agent has an egocentric perspective. The traditional way of dealing with uncer-

tainties is through partially observable methods, such as contingent and conformant

planning [42, 6]. Partially observable planning approaches form belief states of the

world that account for multiple possibilities for the current state. Thus, they can

be considered as conducting close-world planning in belief states. One of the major

downsides of these approaches is that they do not scale well with increasing com-

plexity making them too computationally expensive to deploy in real-life settings.

Continual planning is another alternative class of planning approaches that solves

partial observable problems. Rather than account for multiple branches of possi-

ble states combinations, continual planning uses the plan-execution-monitoring cycle

to execute part of the complete plan while gathering information during execution.

A principled conditional planning language, Multiagent Planning Language (MAPL),
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has been proposed which hides conditional sub-plans with ”unknown” fluents to guide

goal-oriented exploration [8].

Although many formalisms have been proposed to solve partially observable plan-

ning problems, most egocentric agents are still implemented in an ad-hoc manner.

Agent designers often prefer to implement a classic planner as sub-routines rather

than modeling the entire problem as a partially observable domain. Some of the ad-

vantages of classical planning are that they are more robust, and domain designers are

often more comfortable with common planning languages such as Planning Domain

Definition Language (PDDL). Another challenge with partially observable formalisms

is the need for the closed-world assumption where goals need to be achieved from an

initial set of fluents (or their beliefs). In practice, this requires the users to define

all objects in a domain prior to execution. These requirements are not realistic in

many settings where exploration is required. Thus, existing partially observable for-

malisms are mostly used in multi-agent settings where the environment and dynamics

are known, but agent behaviors are unpredictable. In egocentric agents, the world

is hidden, and exploration is needed to discover information. Information of object

existence and how many objects are there is often unknown to the domain designers.

A framework that can complement the shortcomings of existing partially observable

planning approaches is needed for egocentric agents to solve tasks in unknown envi-

ronments.

1.2.2 Representation Problem

A good representation is crucial for both learning and reasoning. However, deep

learning and symbolic AI seems to represent information on opposite sides of the
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scale. Deep learning use gradient-based distributed representation where information

is encoded as continuous vectors. Symbolic methods use localist approaches where

concepts are associated with discrete symbols. Deciding on the suitable representation

to bridge neural and symbolic models is necessary for any hybrid system. There are

many possible approaches to integrate neural and symbolic representations. One type

of approach encodes symbolic knowledge into the weights of neural networks via the

network structures [41]. Another way is to extract symbolic information in continuous

vectors learned through networks via disentanglement [21]. Discretized vector embed-

dings learned via autoencoder have also shown usefulness as state representations in

classic planning tasks [1]. Most recent approaches focus on lower-level representa-

tion learned via neural networks with labeled data. One of the short-comings is that

extracting symbols can only be done through a large amount of labeled relational

information. These labels are not readily available and much harder to produce than

simpler tasks such as classification. In addition, rules and logic learned through these

networks are still distributed within large neural networks and largely uninterpretable

by users. These downsides make them difficult to be applied to embodied agent ap-

plications. In most settings, embodied agents are designed for specialized tasks and

are grounded in real-life objects.

Many common tasks can be modeled in a high-level symbolic system with discrete

representations. For example, modeling semantic navigation tasks only requires an

agent to understand the concept of objects and their spatial relationships. The ben-

efit of learning comes from converting raw sensory data and their uncertainties into

structured symbols. Grounding unstructured information often means conducting

classification, which is one of the most applied areas for deep learning. However, the
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output for a classification problem is a distribution over categorical labels. The rela-

tionship among common output classes is often not incorporated in the classification

task. Thus, an intermediate representation is still required to bridge neural network

outputs with the information necessary for planning. One of the main challenges of

a neural symbolic model is finding a way to bridge neural network outputs and their

uncertainties with inputs for symbolic systems.

1.3 Objective

The main objective of this work is to propose a planning-based neural symbolic frame-

work for embodied agents that can conduct semantic navigation tasks. To achieve

our objective, the proposed framework must address two problems. The first is to

incorporate egocentricity into classical planning methods where exploration and in-

formation gathering are required. In addition, the solution should be able to convert

classical planning methods into egocentric alternatives semi-automatically for ease

of use. Secondly, the proposed framework needs to have a representation that can

bridge the output distribution of neural networks with inputs required for symbolic

planning. The approach needs to demonstrate effectiveness in semantic navigation

tasks where the goal is to discover a predefined set of objects in an unknown environ-

ment. Our work should be compared with existing end-to-end deep learning methods

based on accuracy and sample efficiency. Overall, the thesis highlight the feasibilities

and challenges of building planning-based neural symbolic agents. Our work to serve

as a proof of concept for the effectiveness of hybrid systems and as a foundation for

future work in neural symbolic embodied agent design.
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1.4 Organization of Thesis

Chapter 2 introduces the relevant background information for semantic navigation,

egocentric planning, and object detection. Chapter 3 gives an overview of the pro-

posed neural symbolic framework and its main components. Chapter 4 details an

open-loop replanning method that can convert pansophical planning problems to ego-

centric alternatives. The method is tested on classical planning problems commonly

used in planning benchmarks. Chapter 5 shows the integration of object detection

with egocentric planning that can conduct semantic navigation tasks. The advantages

of the hybrid method versus the end-to-end differentiable model are also outlined in

the chapter. Chapter 6 outlines related work in both agent navigation and partial ob-

servable planning. Finally, Chapter 7 summarizes our work and outlines the thesis’s

feasibility, limitation, and future directions.
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Chapter 2

Background

2.1 Semantic Navigation

We use semantic navigation as the main evaluation methods for our proposed method.

Semantic navigation (or object navigation) is one of the most critical problems to

solve in embodied agents. It refers to to the task of gathering information about the

world and converting it into semantic meaning. Human beings possess the natural

ability to conduct semantic navigation. Thus, we can easily reason about the world

around us and perform complex tasks accordingly. Embodied agents are designed to

perform tasks in many areas such as space exploration, transportation, and security.

However, most of the embodied agents today do not possess the ability to understand

and reason over the environment. With the advancements in sensor technologies and

computational power, integrating semantic information has become a more relevant

topic task for embodied agent design. We work aims to construct agents that can

eventually reason like humans on both geometric and semantic levels.

Spatial and conceptual information are both required for semantic navigation.

Embodied agents and human beings store information differently. The inner working
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Figure 2.1: Examples of Semantic Navigation [27]

of the human brain remains mostly a mystery. However, the representation of both

spatial and semantic information seems to be entangled in the brain [56]. Most

embodied agent designs do not aim to replicate the same system as the human brain.

Rather, embodied agents are designed to mimic the behavior of human beings. In

most robots, location information is stored in a tubular coordinate system. Semantic

information is stored separately to be used to reason over the space. The key to

semantic navigation is to build a system that can bridge the gap between spatial and

semantic information. Such a system is often referred to as a semantic mapping [27].

A example of semantic navigation system is shown in Figure 2.1 In this work, we use

a graph representation of possible movements as a way to store semantic and spatial

information to bridge this gap.
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2.2 Planning

2.2.1 PDDL

Planning Domain Definition Language (PDDL) was initially developed by Drew Mc-

Dermott and then subsequently improved upon by the automated planning commu-

nity to standardize domain and problem definitions [32]. It is based on Stanford

Research Institute Problem Solver, or STRIPS, a formalism where states and actions

are described by binary literals of atoms. Planning tasks described in PDDL consist

of domain descriptions, initial conditional of the state, and the goal state. The do-

main descriptions consist of objects, predicates, and actions relevant to the planning

problem. The initial condition and goal condition describe both the current and goal

state in the form of grounded fluents. Additional constructs such as duration and

action cost are added to subsequent versions of PDDL to incorporate more problem

types [15]. We use PDDL to represent planning problems in this work.

2.2.2 Modified STRIPS Notation

We use an extension the commonly used STRIPS notation to include the notion of

objects. In STRIPS, a planning problem is defined with a tuple 〈F , I , A,G〉. F is a

set of fluents, I ⊆ F is the initial state of the world, and G ⊆ F is the goal state. A is

the set of actions available. For each action a ⊆ A,PRE(a) ⊆ F is the precondition

of that action, ADD(a) ⊆ F is the add effect, and DEL(a) ⊆ F is the delete

effect. Our method operates over planning problems specified in PDDL. Therefore,

we consider fluents to be represented by predicates with typed objects. We define a

set O to be the set of objects in each planning problem. The explicitly list of objects

in our modified notation is to help our algorithms to identify objects and their types
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Figure 2.2: Graphical illustration for Search-and-Rescue

when new objects are encountered during exploration. We include O in the STRIPS

problem, and our complete planning problem is defined as a tuple P = 〈O,F , I , A,G〉.

We use Progress(I, a) = I ′ to indicate progression when an action a is taken and

the initial condition I is to ′I after the action. The operator Solve(P ) is used when

solving the planning problem P with an planner. This modified STRIPS notation is

ued in our egocentric planning in Chapter 4.

2.2.3 Grid Navigation Example

We use a 2D navigation problem specified in PDDL as an example to illustrate our

approaches throughout this paper. The problem is the simplified version of the Search-

and-Rescue problem [49]. In this planning problem, an agent is spawned on a 2D grid,

and its goal is to search and pick up a person and then navigate to the hospital. The

planning problem includes 4 object types: a robot object, location objects, a person

object, and a hospital object. The predicates include object location predicates, con-

nection predicates connecting locations, and a holding predicate indicating whether

an agent is holding a person. The action set includes moving to another location and

picking up the person. A visual illustration of the problem with the corresponding
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PDDL definitions are shown in Figures 2.2 and 2.3.

Figure 2.3: PDDL for Search-and-Rescue
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2.2.4 AI2-THOR

This thesis uses scenes and images generated with the AI2-THOR simulator to con-

duct our experiments [29]. AI2-THOR uses 3D reconstruction of photo-realistic home

environments, including bathrooms, bedrooms, kitchen, and living room scenes. The

environment provides an egocentric agent that can interact with common household

objects and perform navigation actions with simulated physics. The goal of the sim-

ulator is to provide realistic scenarios for an agent to conduct learning and planning.

The simulator provides the agent with a first-person view that can be rendered as an

RGB image. The object information is given as a dictionary consisting of bounding

boxes and binary masks. The distance is rendered as an inverted pixel-level depth

map. Due to high reconfigurability and flexibility, AI2-THOR is one of the most used

environments for embodied agent design. Many types of research in reinforcement

learning, visual question answering, object detection, imitation learning researches

have used AI2-THOR as a way to evaluate model performances citeshridhar19. We

also use the ALFRED challenge dataset provided by AI2-THOR to evaluate the

long horizon sequential decision performance of our methods [42]. The ALFRED

dataset contains videos of egocentric views of agents’ performing common household

such as heating or washing a dish in a kitchen environment. For each video frame,

both depth and object information can be extracted from the AI2-THOR simulator.

Human-labeled natural language descriptions are also given as high-level instructions

for the agent. For our purposes, we ignore the nature language portion of the dataset

and only object and goal information provided. In our experiments, we focus on

deterministic and stochastic actions. We set the rotation angle to a fixed 90 and

movement distance to 0.5 meters. Our agents can interact with objects within a 1.5
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Figure 2.4: Examples of AI2-THOR Environments from ai2thor.allenai.org

meter radius, and objects beyond 5 meters are considered unobservable. Our agents

can interact with objects with toggle, open, and close actions. Although the global

controller can access states of objects, our agents can only extract information from

its sensory inputs. Examples of visual inputs are shown in Figure 2.4.
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Chapter 3

Methodology

Our framework consists of three modules: Semantic Segmentation Network(SSN),

Semantic Location Graph(SLG), and Egocentric Planner(EP). The SSN module con-

tains neural networks pre-trained on image segmentation tasks that can identify ob-

jects and regions of interest from an egocentric image. The SLG module is a learned

graph that stores locational and observational information. The EP module is an

egocentric version of classic planners. For each step, the agent parses raw image in-

puts using SSN to ground object and relational information. The output of SSN is

stored in the nodes of SLG and is updated after every action. The semantic graph is

then fed into a planner parser and is translated as state inputs for EP. Finally, EP

determines whether a plan can be produced or more exploration is needed to gather

additional information. When a plan can be found, the agent will use policy produced

by the planner, otherwise our methods trigger an exploration policy where the goal is

to gather new information required for the original goal. The overall framework can

be seen in Figure 3.1, and each module will be discussed in the following sections. An

implementation of our framework is tested on object navigation tasks. The results

are shown in Chapter 5 of this thesis.
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Figure 3.1: An overview of the proposed framework

3.1 Semantic Segmentation Network(SSN)

The Semantic Segmentation Network grounds the egocentric image into a structure

set of objects and relationships. The exact implementation of such networks should be

decided based on task and environment. Object detection and segmentation is a well-

researched area. Some of the most common techniques are YOLO and MaskRCNN

[38, 20]. Deep learning based scene understanding techniques, such as the Deep

Relational Network, can be applied to extract relationships among objects [12]. For

automated planning methods, objects and relationships are the building block for

most problems. Thus it is natural for a domain designer to specify what objects and

their relationship are important for a certain problem. These specifications can then
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be used as categories to train supervised deep neural networks. Modularizing SSN

also gives our framework better knowledge transfer capabilities than an end-to-end

system. A network trained to recognize an object can be used in other tasks that

involve the manipulation of that object.

3.2 Semantic Location Graph(SLG)

The Semantic Location Graph is a graphical representation that contains information

produced by the Semantic Segmentation Module. Integrating semantic and locational

representation of space is one of the foundational problems in embodied agent design.

An egocentric agent only has immediate access to its local space where action can be

taken within perception. To conduct tasks in a partially observable environment, an

agent needs to find a way to understand environmental structures through exploration

and experiences. Representing space as a top-down map is one of the most common

approaches to represent the global space. Techniques such as SLAM have a long

history in robotics and navigation[33]. However, incorporating semantic information

into a top-down map requires transferring visual perception into 3D mashes with se-

mantic labels. The translation drastically increases space complexity and is prone to

errors, thus making them unsuitable for symbolic algorithms. Our framework con-

verts semantic information into affordances, defined as locations where action can be

conducted [16]. We can then represent the semantic information of an environment

as a graph structure where affordances are nodes connected by navigational edges.

This way, we can reduce a planning problem’s complexity by sperate navigation from

planning objectives. However, traditional affordances are identified based on appli-

cable actions, which can be difficult to determine prior to action execution. Thus we
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use an object-centric approach that labels a place as an affordance if a predefined

set of objects can be found within perception. This way, we can reduce the task of

determining action applicability to object recognition which is a much simpler prob-

lem. Another advantage of focusing on objects is to encourage knowledge transfer

among different tasks. New sets of actions can easily be added to a problem during

exploration if they operate on the same set of objects.

3.3 Egocentric Planner(EP)

To convert information stored in the Semantic Location Graph as inputs for a plan-

ning problem, we need to find a way to incorporate egocentricity into the planning

formalism. Classical planners are defined with the fully observable assumption where

the entire state space is known to the agent. However, exploring the whole state

space is often impractical, and much of the environment could be irrelevant to the

goal. Thus we propose an Egocentric Planner(EP) that can semi-automatically con-

vert classical planning problems into egocentric alternatives. The method assumes

that the world is made up of objects, and predicates define states and relationships

among objects. Since EP could share the same object set as the SSN module, the

object-centric view enables direct information transfer among modules. Furthermore,

our method uses an open-loop approach which interleaves planning and exploration

as separate policies. If our planner has enough information to formulate a plan, then

our agent will use the actions generated from EP to achieve its goal. Otherwise, the

planner will reply on an exploration policy to gather more information about the

environment. The detailed implementation of our Egocentric Planner is shown in

Chapter 4 of this thesis.
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Chapter 4

Do You See What I See?

An Egocentric View of our Pansophical Planning

Problems

This work aims to propose a semi-automated mechanism that allows planning do-

main designers to convert classical planning problems into an egocentric alternative.

Classical planning takes a pansophical view of the world: everything is fully known,

observed, and static (no exogenous events with a single agent). While there are

extensions to partial observability, this leapfrogs an important intermediate step of

embodied agent design: egocentricity. The generated planning problems are classical

as well, and we introduce an open-loop replanning mechanism that progressively ex-

plores the egocentric space until the original goal is solved (or deemed unsolvable).

Our work serves as a crucial first step towards embodied agents that can be equipped

with an appropriately specified egocentric version of known environment dynamics.
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4.1 Introduction

Most classical planning problems are defined with a pansophical reference frame where

the environment is fully observable. However, in many planning tasks, an agent only

has a limited view of the environment. Existing approaches on partially observ-

able planning problems, such as conformant or contingent planning, use belief states

to represent uncertainty in the environment [22, 23]. However, representing belief

states often requires access to information such as what objects are present in the

environment in advance. Many planning applications do not provide access to such

information. These types of egocentric agents often need to incorporate exploration

in the strategy [24]. Egocentricity can also be necessary for embedded agents to

transfer skills across environments [10]. Often, solving a planning problem egocentri-

cally requires manual conversion by a domain expert. The conversion process can be

time-consuming, sometimes requiring the definition of new syntax. A standardized

semi-automatic approach can lift the burden of manual conversion, decreasing the

hurdle of egocentric planning research and open up the door to domain-independent

planning techniques to this setting.

We propose a novel semi-automatic approach that can convert classical planning

problems defined in PDDL into egocentric alternatives. Our method takes a set of

user-defined object types with their initial states as input, and outputs the egocentric

version of the original problem. We assume that the world is made up of objects.

Thus predicates define all objects’ states and relationships. By defining which objects

can be observed by an egocentric agent, we can extract the observable state space

from the corresponding predicates. We use an exploration algorithm that searches

through the original problem’s state space until a plan is found or deemed impossible.
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The iterative exploration is facilitated by an open-loop replanning mechanism, which

progressively updates the observable state space. Thus, our overall framework consists

of two interacting processes: one determines which set of fluents are observable, and

the other explores the unobserved state spaces.

The egocentric planning sub-problems generated by our approach can be solved

using off-the-shelf planners. Our algorithm also keeps syntax and vocabularies consis-

tent with the original planning problem, making results easily interpretable. We test

the validity of our approach by using it on five classical planning problems and corre-

sponding egocentric interpretations of them. Our experimental results demonstrate

that our approach is practical through both quantitative and qualitative evaluations.

To the best of our knowledge, there has not been any attempt to semi-automatically

convert classic pansophical planning problems into egocentric alternatives. More com-

plex or domain-specific problems may require further modification of our proposed

approach. Nevertheless, we believe this work is an important step forward that can

encourage more automated planning research in egocentric settings.

In the following sections, we provide preliminary definitions and a detailed outline

of our framework, followed by descriptions of our experimental setup and a discussion

of the results. In addition, we provide a step by step example of our approach using

a simple grid based planning problem.

4.2 Approach

For a planning problem to be egocentric, only parts of the state space are observable.

We can construct an egocentric planning problem P
′

= 〈O′
, F

′
, I

′
, A

′
, G

′〉 from the

original pansophical planning problem by finding the corresponding subsets for each
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element in P . 〈O′
, F

′
, I

′〉 are the egocentric version of the problem’s objects, fluents

and initial states. Their value depends on an agent’s observable state space. A
′

is the

set of actions available to the egocentric agent containing O
′
. It contains actions in

the original pansophical set A with additional actions required for exploration. G
′

is

the goal of the egocentric agent, which is to gather information until the original goal

G can be achieved. The objectives of our approach are to determine the current ego-

centric state and to facilitate exploration. We separate these tasks into two separate

algorithms. The first algorithm extracts the observable states from an pansophical

planning state space. We call this algorithm the Egocentric Subset Extractor, or

ESE. The second algorithm facilitates exploration and information gathering in an

partially observable environment. We call this component the Iterative Exploration

via Replanning, or IER. The subsequent sections will motivate and describe both

algorithms in detail, followed by a demonstrated example of our approach on the grid

world domain.

4.2.1 Egocentric Subset Extractor

The ESE algorithm determines which fluents in the pansophical planning problem

are observable. We adopt an object-centric view of the world and assume objects’

states/relationships are represented by fluents in the form of object typed predicates.

Thus, if we can determine which set of objects are observable by an agent, we can

find the corresponding set of fluents that are also observable. The visibility of certain

objects depends on the agent’s egocentric state, and we refer to these as anchor

objects. The ESE algorithm determines which subset of fluents in the initial set in a

planning problem P = 〈O,F , I , A,G〉 should be included in the egocentric problem.
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Our approach requires the user to determine the type and the initial set of ob-

servable objects. We define this set S as a tuple 〈T,C,R〉. T contains the anchoring

object types, and C is a set of anchor objects currently observable. R is defined as a

set of predicates that connect one anchor object to another. We make the following

four assumptions for our approach:

1. We can uniquely determine a planning problem’s egocentric aspects by way of

the observable anchor objects.

2. If an object is observable, then its states and relationships with other objects,

in the form of predicates, are also observable.

3. Any predicates that do not contain any anchor objects are always observable.

4. There exist a set of predicates that define connections or relations among anchor

objects.

5. The environment is deterministic.

The first assumption is a direct result of adopting an object-centric view of the

world. The second assumption allows us to determine which fluents in the form of

predicates are observable. Intuitively, predicates represent the state and relationship

among objects. Thus any predicates that contain observed objects should also be

observable. For the third assumption, if a predicate contains no anchor objects,

its observability is independent of an agent’s egocentric state. We assume these

predicates should always be observable by the agent. Finally, we assume anchor

objects are connected via relational predicates. Agents should be able to observe

other anchor objects that are immediately related to the current set of anchor objects.
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Algorithm 1: Egocentric Subset Extractor

Input: P = 〈O,F , I , A,G〉
Anchor Object Set S = 〈T,C,R〉
Output: Egocentric projection P

′

1 Initialize O
′
= ∅ and I

′
= ∅;

2 for p ∈ I where type(p) ∈ R do
3 if p has object o ∈ C then
4 for o ∈ p do
5 if type(o) ∈ T then
6 O

′
= O

′ ∪ {o};

7 for p ∈ I where predicatetype(p) /∈ R do
8 if p has o ∈ O′

or p is constant then
9 I

′
= I

′ ∪ {p};
10 for o ∈ p do
11 O

′
= O

′ ∪ {o};

12 F
′
= F ;

13 A
′
= A;

14 G
′
= G;

15 return P
′

= 〈O′
, F

′
, I

′
, A

′
, G

′〉;

These related anchor objects are used to determine where the agent need to explore,

which we will discuss in a later section. Our ESE algorithm first iterates through all

the relational predicates of type R to extract observable relational predicates and their

anchor objects. It then extracts all the non-relational predicates that are either always

observable or containing observable anchor objects. The extracted predicates define

the egocentric model of the agent. The full ESE algorithm is shown in Algorithm 1.

In the grid example, the user needs to define a set of initial observable anchor

objects, anchor types and relational predicates, S = 〈T,C,R〉. Anchor objects in

this problem are the location objects. The relational predicates are (conn ). Ini-

tially, only f0-0f is observable by the agent. The ESE algorithm first extracts all
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Figure 4.1: Initial condition extracted by ESE

the relational predicates containing f0-0f. The algorithm then finds all location

objects related to the f0-0f which are f0-1f and f1-0f. Next, the ESE algorithm

extracts non-relational predicates in initial state I that contains f0-0f, f1-0f, f0-1f.

(robot-at robot0 f0-0f) is extracted as a result. Finally, all fluents contain no lo-

cation objects are considered observable and are also extracted. The egocentric initial

state I
′

is shown in Figure 4.1.

4.2.2 Iterative Exploration via Replanning

An egocentric agent can only observe a subset of the whole state space. Thus, a way

to explore an unknown environment is often required to formulate a plan. An explo-

ration strategy must identify which part of the state space needs to be explored while

keeping track of state information observed previously. Our Iterative Exploration via

Replanning (IER) algorithm is such an approach that progressively explores unknown

or partially known environments. We designed IER to generate and modify existing

PDDL files directly. As a result, we can use off-the-shelf planners directly.
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In addition to P
′

= 〈O′
, F

′
, I

′
, A

′
, G

′〉 generated by the ESE algorithm, IER re-

quires the user to identify an additional set of exploration actions, E, as input. We

define exploration actions as actions that an agent needs to change its current ob-

served state space.

By taking actions in E, an agent will transition to a state where new

objects and fluents are observable.

An exploration action a must have at least one anchoring object in its parameters.

Both PRE(a) and ADD(a) ∪ DEL(a) must also have predicates containing these

anchoring objects. To distinguish between observed and unobserved objects, we create

(unknown ?obj) predicates to identify unobserved objects. For an exploration action

a, (unknown o) predicates are added to PRE(a) for each anchor object, o, declared

in the parameters set. After the action is taken, the unknown object is deemed to be

revealed and will be removed using DEL(a). An example of exploration action is the

move action in search-and-rescue domain where the agent can observe anchor object

location when the action is taken.

When a plan with the original goal cannot be found, our algorithm sets exploration

as a goal. We achieve this by introducing an (exploration) predicate to replace the

original goal state. Since exploration is achieved through exploration actions in E,

we need to add the (exploration) goal predicate to ADD(a) for each a ∈ E. After

an exploration step, a new planning problem P
′

is generated using ESE. These steps

are repeated iteratively through replanning until a plan for the original goal can be

found. IER is shown in detail in Algorithm 2.

In the grid example, the action required for the agent to move to another egocen-

tric state is the move-robot action. IER first iterates through all the fluents in the
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Figure 4.2: An exploration action example

initial condition set I
′

and identifies unknown locations by adding (unknown f1-0f)

and (unknown f0-1f) fluents. To make an exploration action, our IER algorithm

creates a new action explore by adding (unknown location) in move-robot’s pre-

condition, (not (unknown location)) and (explored) predicates in its effect set.

The exploration action is illustrated in Figure 4.2. Since no plan can be found for

G
′
, we replace the goal state with G

′
= {(explored)}. This forces the agent to move

to another location to gather more information about the broader environment. In

the next iteration, the ESE algorithm will extract a new set of observable objects

followed by IER until a plan with the original goal can be found or the problem is

deemed unsolvable.

4.3 Evaluation

We tested our approach empirically on seven classical planning domains written in

PDDL. These domains are Blocks World, Minecraft, Search-and-Rescue, Sokoban,

and Elevators. In addition, we used classical planning problems defined in the PDDL-

Gym libarary [45], which contains domain and problem files written in PDDL, along

with visualization APIs. For each planning problem, the user only needs to add the
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(unknown ?obj) predicate, the (explored ) predicate, and the exploration actions.

No modifications are needed for the problem file. It takes only a matter of minutes

for manual conversion if the user is already familiar with the domain and PDDL

modelling in general.

For each planning domain, we tested eight different problem setups. The results

are summarized in Table 4.1. The success rate is number of successful conversion for

each domain. The egocentric and pansophical plan length is also shown. The set of

exploration action and anchor objects we defined is also shown the figure. We evaluate

the performance based on the percentage of successful conversions from an pansoph-

ical planning problem to the egocentric alternative. In addition, we compared the

average number of steps required for the egocentric agent to solve a planning problem.

We used Tarski [36] to parse each planning domain, and the actual planning is done

on the Planning.Domains online solver [34]: http://solver.planning.domains. We

also show the set of all anchor objects and exploration actions used in our experi-

ments. Although most problems only require singular anchor object and exploration

action, the Travel and Logistics domain shows that our algorithm also works when

multiple anchor objects or exploration actions are required in a domain.

The results show that our method can successfully convert most classical planning

problems to an egocentric version. For Search-and-Rescue, Blocks World, Elevator,

Ferry, Travel and Logistics domains our algorithm can successfully convert 100% of

the testing problems. In the case of Sokoban, we were able to covert four out of

five problems settings. Unlike the other six problems, Sokoban contains irreversible

actions that can result in dead-ends. The failure occurred when the agent can no

longer achieve its original goal due to such actions. For the logistics domain, we
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have to make changes to the original problem by adding local connections within a

city. The original problem does not provide connections among airports and stations,

thus ignores the iterative process for the agent’s movement. Our method relies on

connection predicates to facilitate gradual exploration. If an agent can reach a state

without passing through any other state, our method will treat both states as visible

in the egocentric formulation. However by simply adding geometry among locations,

our algorithm is able to conduct egocentric conversion without any other problems.

Success Plan Length Anchor Explore

Rate Ego. Pan. Objects Actions

Search-&-Resc. 100% 26 10 location move

Blocks World 100% 16 11 block pick-up

Elevator 100% 29 22 floor move

Sokoban 75% 64 41 location move-dir

Ferry 100% 23 12 location move

Travel 100% 17 15 state walk, fly

Logistics 100% 21 17 city, location drive, fly

Table 4.1: Results of tested planning domains

4.4 Discussion

Our algorithm can successfully convert most of the domains to egocentric equivalents.

This demonstrates that our approach is not limited to just agent navigation prob-

lems. Both Search-and-Rescue and Sokoban are 2D navigation problems where the

notions of agent sand egocentricity are apparent. In both problems, agents are defined
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explicitly by the domain designer as agent or robot objects. However, an explicit

definition may not always be necessary. We can define agents as the set of actions

that can change the observable state. For example, in Blocks World this action set is

{stack, unstack}. Intuitively, the agent is whomever that have the ability to move

the blocks.

The location object is an obvious choice to define egocentricity in 2D navigation

problems. However, defining it for Blocks World is more challenging. The set of

observable states changes depending on the perspective of the observer. Our solution

adopts a (literal) top-down perspective, limiting the observable state to only blocks

that are on the top of stacks. We define the block object as the anchor object. Each

block is connected via (on ?block1 ?block2) connection predicates. We then set

unstack action as the exploration action. A block is considered explored when the

unstack is conducted. Our IER algorithm then extracts a new block to explore using

the (unknown ?block) predicate. The Blocks World formulation shows as long as all

required inputs can be satisfied, our method can convert a planning domain without

an explicit definition of an agent.

Our method treats exploration as a way to gather information about the state-

space independent of the original goal. Thus, such exploration could lead the agent

to reach a dead-end where the original goal is no longer reachable. For problems like

Search-and-Rescue and Blocks World, all actions are reversible, and the initial goal

will always be solvable when enough information is gathered. However, in Sokoban,

the agent can reach a dead-end via irreversible actions. In our implementation, our

agent does not consider the feasibility of the original goal when exploring, which can

be an extension of this work.
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Algorithm 2: Iterative Exploration via Replanning

Input: Problem P = 〈O,F , I , A,G〉
Anchor object set S = 〈T,C,R〉
Exploration action set E
Output: Plan M for the pansophical environment

1 Initialize Oe, Fe, Ie, Ae, Ge = ∅;
2 plan M = [ ];
3 while Solve(P ) = NULL do
4 Oe = O;
5 Ae = A;
6 for o ∈ O do
7 if type(o) ∈ T and o 6∈ C then
8 Ie = Ie ∪ { (unknown o) };
9 for a ∈ E do

10 a
′
= a.copy();

11 PRE(a
′
) = PRE(a

′
) ∪ (unknown o)

12 DEL(a
′
) = DEL(a

′
) ∪ (unknown o)

13 ADD(a
′
) = ADD(a

′
) ∪ (explored)

14 Ae = Ae ∪ a′

15 Ge = {(explored)};
16 Fe = F ∪ Ie ∪Ge;
17 π = Solve(〈Oe, Fe, Ie, Ae, Ge〉);
18 M.extend(π);
19 for a ∈ π do
20 if a ∈ E then
21 add anchor objects in a to C;

22 Ie = Progress(Ie, π) ;
23 Ge = G;
24 P = ESE(〈Oe, Fe, Ie, Ae, Ge〉, 〈T,C,R〉);
25 where new egocentric problem P is generated by ESE;

26 M.extend(Solve(P ));
27 return M ;
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Chapter 5

A Neural Symbolic Approach for Object

Navigation

In this work, we propose a simple neural-symbolic approach for object navigation in

the AI2-THOR environment. Our method takes raw RGB images as input and uses

a spatial memory graph to store object, depth, and location information. By having

a discrete graph representation of the environment, the agent can directly use search

algorithms to find a path to the goal. For more complex problems, our method also

can convert a learned graph into an automated planning formulation. An off-the-shelf

planner can solve the planning problem for the agent. Overall, our architecture con-

sists of a semantic segmentation network, a depth prediction network, a spatial graph

representing the environment, and a planning converter. We test our approach for

both simple object navigation tasks, which require navigating towards a target ob-

ject, and a set of more complex pick-and-place tasks, which involves finding a target

object and moving it to a receptacle object. Model performance is evaluated on both

task completion rate and steps required to reach target objects in an unknown envi-

ronment. Empirical results demonstrate that our approach can achieve near-optimal
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performance for object navigation with the ability to solve long horizon sequential

decision problems. Our work builds a foundation for a neural-symbolic approach that

can reason via unstructured visual cues.

5.1 Introduction

Object navigation refers to the task of finding specific scenes or objects in an unknown

environment [11]. Solving the object navigation problem is necessary for building

intelligent systems that can autonomously conduct tasks in any given environment.

Object navigation is a natural ability possessed most animals, but it is not a trivial

problem for artificial agents to solve [2]. The challenges of object navigation include

achieving sub-goals, such as object recognition [11] and scene memorization [11]. An

agent needs to navigate, discover objects, and memorize scenes while keeping track

of its location. Recent advances in deep reinforcement learning have given rise to

end-to-end RL agents that can conduct semantic navigation tasks using raw RGB

images [59]. However, these end-to-end systems require large neural networks with

a significant amount of training steps. Additionally, the policies learned by these

systems are distributed among its weights, which make transfer learning difficult

[58]. In contrast, symbolic approaches, such as automated planning, can easily solve

most object navigation tasks given a discrete environment [42]. The problem with

symbolic approaches is that they requirement explicit defined symbols to represent

environmental information.

We approach object navigation with a neural-symbolic method, taking raw RGB

images as input and constructing a spatial memory graph containing both location

and object information. The learned graph can be searched using any graph search
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algorithm or be converted into a planning problem. Rather than embedding reward

signals inside a learned policy, we use neural networks to ground visual input into

discretized symbols. Our methods modularize and disentangle reasoning with percep-

tion, which should enable more sample-efficient learning. Our approach first converts

raw RGB images into a semantic segmentation and a depth perception map. The

training data are generated using the AI2-THOR simulator, which provides both ob-

ject and depth information with an egocentric view. We chose YOLO for semantic

segmentation and U-Net for depth prediction [39, 37]. The environmental information

extracted is then stored based on the location and orientation of the agent in the form

of a directed graph. Finally, we convert the learned graph into a PDDL problem with

a predefined goal. The PDDL problem is passed to our iterative egocentric planner,

shown in Chapter 4.2 of this thesis, to generate action sequences. We demonstrate

that our neural-symbolic approach is very sample efficient, and the object navigation

is almost trivial once the graph is constructed after some exploration. This work also

builds the foundation for applying neural-symbolic methods to complex long-horizon

tasks for embodied agent reasoning.

5.2 Approach

To tackle the object navigation problem, our agent needs both a visual perception

module and a memory unit. The proposed method has four major components: a

semantic segmentation network, a depth prediction network, a spatial graph construc-

tor, and a module to convert the learned graph to a planning problem. We chose to

use YOLO and MaskRCNN [37] as our object detection method. For depth predic-

tion, we constructed and trained a U-Net [39] to map pixels input to depth in meters.
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The overall process of extracting information from raw image is shown in 5.1. The

model grounds raw visual input into both semantic and depth information which will

be used as input for our egocentric planner. The semantic graph is constructed using

the Networkx library [19]. The nodes of the graph are the location and orientation of

the agent, and the edges represent the possible movements. We use bidirected graphs

to distinguish movement in opposite directions. The conversion from learned graph to

planning problem is done with Tarski with output specified in PDDL [36]. Our agent

uses object detection to gather object and depth information from raw RGB images

and stores this information in the spatial graph as a simple lookup. For simple object

navigation tasks, our agent can directly navigate to any previously discovered object

stored in the graph after a period of exploration. For more complex pick-and-place,

we convert the planning problem to an egocentric alternative using methods specified

in Chapter 4.2.

5.2.1 Object Detection

Our object detection method is based on YOLO [37]. It takes a raw image as input and

outputs detected objects distribution with bounding boxes. Compared to two-step

methods, such as RCNN [20], it is faster to train and easier to deploy. We adjusted

the original network by adjusting the last two layers to fit the AI2-THOR object

categories. We initialize the network with weights pretrained on the COCO dataset.

We use the adam optimizer with a learning rate of 0.0001 during our training. The

dataset used is generated with random configurations in AI2-THOR environments.

To ensure generalizability, the training object configurations are not present in the

graph construction phase.
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Figure 5.1: Information Extraction form Raw Image

5.2.2 Depth Estimation

We use a U-Net architecture to train a depth prediction network to estimate the

distance between the agent and a target object. While U-Net has been used chiefly

for image segmentation in medical data, it has also shown effectiveness for depth

estimation [39]. We use a 10 layer architecture with a 5 layer convolutional encoder

and an upsample decoder to mirror the encoder. We set the kernel size to 1024,

512, 256, 128, and 64 for both the encoder and decoder. The output is mapped to a

1D depth map range from 0 to 5 meters. Each layer uses ReLU activation with no

additional dropouts. The network is trained with a batch size of 8 images. We use

the Adam optimizer with a learning rate of 0.001.
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5.2.3 Spatial Graph Generation

The spatial graph serves as the memory of the agent during exploration. We encode

location as the key for each node and visual observations as values. The edges are

actions taken by an agent. The four actions we included are MoveAhead, Move-

Back, TurnLeft and TurnRight. The movement actions have a step size of 0.25

while the turning actions have a turn angle of 90◦. For object navigation tasks, we

gave the agent a budget of 1000 steps to explore. We use a simple navigation strat-

egy where if the agent can observe an object of interest, it will move closer to that

object. If no objects of interest can be observed, the agent will navigate to an un-

known location following a uniform random distribution. The probability of whether

an object is present is calculated using YOLO during each step. To make exploration

more efficient, we implemented a queue to store locations visited. We also adopted a

breadth search algorithm to facilitate exploration. The learned graph can be searched

using any graph based algorithm for finding the optimal path. We used Dijkstra’s

algorithm for path planning as the default method [13]. We traversed through five

environments to generate spatial graphs. An example of a generated graph is shown

in Figure 5.2. On average, each graph has around 1231 nodes. However, only around

20 nodes have reachable objects. We setup a random walk agent to compare with

our neural-symbolic agent. This random walk agent has equal probability of choosing

each of the four actions. For pick-and-place task, the graph is generated on the fly

without exploration. The agent convert the graph into a planning problem during

each step and replan after each action is taken. This is done to simulate more realistic

use-case where exploration needs to be done in concurrent with an agent’s planned

actions.
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Figure 5.2: Example of a Learned Spatial Memory Graph

5.2.4 Egocentric Planning

The spatial graph is converted into a egocentric planning problem specified in PDDL.

We then leverage the techniques in Chapter 4 to convert the spatial graph into a

planning problem solvable via replanning. The outputs of the egocentric planner

serve as policies to guide our agents. The goal is manually specified by the user in a

PDDL syntax. When the Egocentric Planner determines that information stored in

the spatial graph is insufficient to achieve the original goal, the planner automatically

produces a policy for exploration and information gathering.
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5.3 Experiments

We use the AI2-THOR environment [29] to setup our experiments. Both simple

object navigation and pick-and-place tasks are conducted to assess our model per-

formance. The environments we used to conduct our experiments are unseen by the

agent because they are not used in the training set for semantic segmentation and

depth predictions. For object navigation tasks, our experiments include three object

categories in five virtual kitchen environment. We evaluated our approach using two

criteria: the success rate and the average path length. We define success rate as the

percentage of successful runs where our agent is able to find the target. The average

path length is defined as the number of actions our agent needs to find a particu-

lar object. For the baseline, we compared our agent against a random walk agent

with uniform distribution among available actions. The experiments are repeated five

times, and the average is calculated. The pick-and-place tasks are designed to evalu-

ate our model’s performance on sequential decision tasks. In addition to finding the

object, the agent needs to perform a ”pick” action on a target object, navigate and

locate a receptacle object and perform a ”put” action while holding the target object.

We use a subset of the ALFRED challenge [42] which include 3 ”pick-and-place” tasks,

each in 5 different virtual home environments. Unlike the object navigation tasks, no

exploration budget is given for these tasks, and the agent will need to explore while

planning for the next sequences of actions. An example of the ALFRED dataset is

shown in Figure 5.3if In addition to the success of each task, we also evaluate our

object recognition and depth prediction neural networks to better understand our

performance bottleneck. The segmentation network uses the percentage of correct

labels produced by the network, and the depth prediction is evaluated on whether an
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object can be reached based on the average distance of an object.

Figure 5.3: Example of ALFRED dataset[42]

5.4 Results

5.4.1 Semantic Segmentation and Depth Prediction

We use an 80/10/10 split to train both our object recognition network and our depth

prediction network. Our training set contains around 400,000 images with both object
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and depths labels. Both test and validation set contains around 50,000 images each.

All images and labels are generated by the AI2-THOR simulator. The validation and

test set are all unseen environments for the agent. We split validation and test based

on different rooms used. We calculate the percentage of correct labeled objects as

evaluation criteria to measure the object recognition network. An object is considered

correctly labeled if the bounding box predicted has more than 80% overlap with the

ground truth with the correct object category prediction. We trained our model for 20

epochs and achieved 92% accuracy on the test set and 89% accuracy on the validation

set. Results can be seen in Figure 5.4. For our depth prediction network, we define

accuracy as a binary classification task to determine whether an object is reachable

or not. We use the average pixel-wise distance within a bounding box to estimate

the distance between the agent and object. When the distance is smaller than 1.5

meters, we classify an object as reachable and unreachable otherwise. The network

was trained for 50 epochs and achieved an 82% accuracy on the validation set and

86% on the test set. Results can be seen in Figure 5.5. Although we observed that

validation accuracy continued to decrease after training, we decided to stop due to

computational and time constraints.



5.4. RESULTS 43

Figure 5.4: Object Recognition

Figure 5.5: Depth Prediction
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Object Room 1 Room 2 Room 3 Room 4 Room 5
Apple Acc 100% 100% 100% 100% 100%
Lettuce Acc 100% 100% 100% 100% 100%
Tomato Acc 100% 100% 100% 100% 100%
Apple Len 21 23 20 27 25
Lettuce Len 21 26 23 21 21
Tomato Len 25 29 22 21 25
RandWalk Acc 0% 66% 0% 0% 66%
RandWalk len 6710 876 4429 951 2328

Table 5.1: Navigation Results

5.4.2 Object Navigation

Table 5.1 outlines the results of each object navigation tasks in each room, and Table

5.2 summarizes the results of our model’s overall performance. Our agent is able to

discover all target objects in all of the settings tested. The test results on the path

length also confirm the effectiveness of our neural-symbolic method. The average

length is 23 actions, which is slightly more than the optimal lengths of 19. Our

method is reaching the optimal theoretical limit, which would require significantly

more data and training steps in end-to-end RL approaches. When comparing our

method to Random Walk, we can see a drastic improvement. An agent randomly

searching in an environment with a given movement budget of 2000 can find an

object 26.4% of the time. The average length for Random Walk agent is 3069, which

takes two orders of magnitude times more actions on average than our agent. Our

results demonstrate a great deal of promise in using neural-symbolic approaches for

the embodied agent setting.
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Average Length Success Rate
NS Agent 23 100%
Random Walk 3069 26.4%
Optimal 19 100%

Table 5.2: Summary of Object Navigation Results

5.4.3 Pick-and-Place

For pick-and-place tasks, we evaluate our agent’s performance based on the com-

pletion of both partial and complete goals with their step counts. A complete goal

is achieved when an agent is able to successfully pick up an object and move it to

the corresponding receptacle. A partial goal is completed when an agent discovers

either the correct object or the correct receptacle. To compare the length of each

episode, we count the number of steps it took our agent to complete each task with

a maximum budget of 1000. We also record the number of action failures and their

corresponding failure categories. The results for each room are shown in Table 5.3

and failure breakdown is shown in Table 5.4. On average, our agent takes 128 steps

for each episode with 16 action failures. An action fails most frequently when our

agent moves into an obstacle, accounting for 71% of the total failures. Other failures

occur when our depth or object detection network produces an incorrect prediction.

The failures suggest that our model performances are bottle-necked by our neural net-

work performances. We believe better classifiers and more data would help improve

our results. Overall, we successfully achieved 86% of our partial goals and 60% of

our complete goals. Random walk agent is unable to achieve any of the experiments

under 10000 steps. The baseline provided by the ALFRED dataset all has a success

rate under 5%, and pure end-to-end methods on the public ALFRED leaderobard
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Object Room 1 Room 2 Room 3 Room 4 Room 5
Avg Steps 78 122 52 255 134
Parital Goal 66% 100% 100% 66% 100%
Comp Goal 66% 33% 100% 33% 66%
Avg Failtures 12 21 7 24 17
RandWalk Acc 0% 0% 0% 0% 0%
RandWalk len 10000 10000 10000 10000 10000

Table 5.3: Pick-and-Place Results

are all below 10%. These methods are often very sophisticated and require weeks of

training and hyper-parameter tunning on large GPU clusters. Our models are trained

only using an Nvidia RTX 2070 GPU and an Intel i7 CPU. Because we disentangle

object segmentation and depth prediction from the overall policy learning, the meth-

ods outlined can be used for zero-shot generalization in new tasks. Although the

experiments are designed to evaluate our neural-symbolic approach, there are still

significant overlaps between our experiments and tasks provided in ALFRED. Our

overall goal completion rate of 60% suggest that our hybrid approach significantly

output perform SOTA end-to-end models which are all sub 10%.

Failure Category
Hit Obstacle 71%
Fail to Pickup 5%
Fail to Place 7%
Depth Error 17%

Table 5.4: Failure Breakdown



5.5. CONCLUSION 47

5.5 Conclusion

We outlined a neural-symbolic method for discretized object navigation tasks in the

AI2-THOR environment. Our results demonstrate that a hybrid model can perform

near-perfect object navigation tasks in simple home environments. In addition to

object navigation, we also evaluated our results on long horizon sequential decision

tasks. Our experimental results show significant performance advantages over end-to-

end baselines. Overall, we demonstrated the effectiveness of a hybrid approach and

have shown the feasibility of integrating neural networks with a symbolic reasoning

engine. This work serves as a first step to building more advanced neural symbolic

agents.
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Chapter 6

Disscussion

To build an embodied agent that can act autonomously in unknown environments is

not a trivial task. This thesis builds on many existing work in both deep learning

and automated planning approaches. The two sub-fields we focus on are embodied

agent navigation and planning approaches over partially observable environments.

This section introduces previous works of agent navigation and then survey the most

prominent partially observable planning methods. We outline and contrast existing

work with our neural symbolic approach.

6.1 Embodied Agent Navigation

Agent navigation can be broadly categorized into geometric and learning based agents.

Geometric based agents often require sensing and constructing a map of the environ-

ment using depth sensors. Once a map is constructed, localization is conducted in

reference to the global map. On the other hand, learning-based agents use neural net-

works trained on expert trajectories to produce navigation policies. Inputs for these

agents are often mixtures of visual and depth information. Rather than having an

explicit map, learning based agents embeds geometric information in the weights of
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neural networks. Our method can be considered a mixture of geometric and learning

based systems. We use a graph to represent geometric between affordances which

are extracted from raw visual input using neural networks. Our works address both

learning efficiency and adaptability in existing systems.

6.1.1 Geometric based Navigation System

Traditionally, embodied agents require a map of the environment to conduct naviga-

tion. The map serves both as a way to localize an agent and a way to generate a path

to the goal. Simultaneous Localization and Mapping, or SLAM, refers to a set of tech-

niques to create a map of the environment using sensors on an agent. SLAM is the

most common methods for traditional agent navigation tasks. It different from global

navigation systems, such as GPS, because a SLAM agent generates the environment

map with respect to itself [51]. SLAM is used for both map generation and agent

localization. When an agent is navigating through an environment, the information

is gathered through sensory. This information will be converted into a map that is

used for path planning. For example, Thurn et al. used a grid generation technique

to generate indoor rooms and hallways [50]. Gross et al. [17] used a laser-guided

depth sensor to align the map with objects. Sometimes these generated maps are not

grid-based. More recent SLAM algorithms focus on generating 3D maps rather than

2D. These maps are more suitable for realistic situations where elevation is often a

big part of navigation. For example, Kummer et al. [30] uses 3D representations gen-

erated from image and depth sensors to map parking lots. For semantic navigation

tasks, object information are often projected onto a global map, which could result

in losing information required for egocentric actions. In contrast, our methods uses
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a graph representation of affordances and store egocentric information in the nodes.

This makes our methods more suitable for tasks beyond navigation.

6.1.2 Learning based Navigation Systems

Learning semantic navigation is a relatively new topic compared to geometric ap-

proaches. Deep learning has taken over the area of semantic navigation with the

recent advancement in neural networks. Most deep learning-based approaches are

being used for learning navigation policies via raw RGB images. Point-goal naviga-

tion is a form of semantic navigation that uses point location rather than an object.

Wijmans et al. have used the end-to-end RL method to achieve state-of-the-art in

point-goal navigation [53]. This work proposed a distributed RL system that can scale

up to billions of training examples. However, these methods are very computationally

expensive and require billions of frames to achieve state-of-art performance. Parisotto

et al. has demonstrated that having a structured memory in RL agents helps with

data efficiency [35]. They propose a location tensor as the memory structure that

is updated using reader and writer processes found in the Neural Turning Machine.

Using similar ideas, Tamar et al. proposed the Value Iteration Network to solve path

planning problems on a local level [48]. Bhatti et al. [4] used a learned SLAM map

to play Doom with RL agents. However, a fixed-size tensor is not the only way to

store memory. Wu et al. used a generative model, inspired by Generative Adversar-

ial Network (GAN), to learn a latent representation of the environment as a graph

neural network [54]. It takes inspiration from human’s ability to localize and imagine

a virtual environment based on memory. Similarly, Yang et al. uses a pre-trained

graph neural network to learn object relationships among objects[55]. These works
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demonstrated that the learned object prior could help agents learn a policy without

relying on recent observations. However, all these end-to-end methods suffer from the

same problem of high data dependency and poor generalizability which our approach

does not suffer from. Also these end-to-end systems are not adaptable for simple

environmental shifts where are agents can conduct zero-shot learning in rearrange

environments.

6.2 Planning under Partial Observability

Defining the environment in an egocentric manner is important to many agent based

applications. Charniak demonstrates the utility of the egocentric view in reinforce-

ment learning in a Grid World setting (2020). They show that the egocentric view

improves the learning algorithm’s ability to apply the learned policy to new problems

never before seen during training. Zhang et al. proposed an egocentric vision-based as-

sistive co-robot system (2013). This work allows humans to actively engage in control

loops via egocentric camera and gesture input. Bertasius et al. presented a generative

adversarial network model that use first-person images to generate a realistic basket-

ball sequence via egocentric motion planning (2018). All these defined planning and

egocentricity in their respective domain-specific settings. In contrast, our method

focuses on egocentricity in the classic domain-independent planning setting.

There exists work on planning under partial observability, such as conformant,

contingent, and epistemic planning. However, we distinguish egocentric planning

from these partial observable planning settings with regards to the use of the belief

space. Conformant can be interpreted as classical planning in belief space, and contin-

gent planning adds uncertainty to the observable state space and can be formulated as
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and-or search problems in the belief space [7, 22, 23]. Epistemic planning represents

belief states as epistemic states which can be reasoned using epistemic logic [5]. Plan-

ners constructed for all of these partially observable planning settings often require

explicitly defining the possible initial belief space. This requires the users of these

planners to have knowledge of all possible objects that will be present in the planning

problem, in advance. However, in many planning problems, an acting agent might

not have access to all unique objects in advance, and new objects and relationships

need to be discovered during exploration. For example, an egocentric agent that is

navigating in a 2D grid might not know all possible “location” objects to formulate

a proper belief state. The approach we take here is to iteratively convert information

the agent has observed as a fully observable planning problem to determine whether

the original goal can be reached or more exploration is needed. However, the fully

observable planner we used can be replaced by conformant, contingent, or epistemic

planners when dealing with uncertainties with agents, actions, or the environment.

That is to say, those areas of planning under partial observability are complementary

to our work, and may be incorporated in future work.

Some previous works have studied planning in open worlds, a similar class of

problems to the egocentric problems we define in this paper. Talamadupula et al.

used a hindsight optimization method to solve planning problems in partially observ-

able worlds (2010). The proposed method uses a prior distribution to generate and

aggregate samples of close-world problems that can be solved using an off-the-shelf

planner. Kiesel et al. proposed a novel partial-satisfaction goal construct that allows

predefined objects to be discovered via replanning (2012). James et al. presented

a framework that derives egocentric views of planning problems for the purpose of
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learning portable representations, sufficient for planning, of classes of tasks (2019).

These representations are learned from traces of actions and transitions. Our work,

however, derives these views from the planning problem’s pansophical description.

The advantage is our approach does not require training data. Jiang et al. introduces

a method to identify and reason over objects in an environment via a database (2019).

The approach converts open world problems to close world settings via hypothetical

instances of unknown objects. All these works adopted assumptions about open-

world problems that we expose via our approach to deriving egocentric problems.

However, these problems require complete reformulation of close world planning do-

mains via their respective specifications. To the best of our knowledge, we are the

first to propose a method to semi-automatically convert classical planning problems

into an egocentric alternative with relative ease.
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Chapter 7

Conclusion

7.1 Summary

The overall objective of this research is to develop a neural symbolic framework for em-

bodied agents tasks. We chose to use automated planning models specified in PDDL

as high-level reasoning systems with environmental information learned through se-

mantic segmentation neural networks. The proposed framework uses an object-centric

perspective that assumes the world is made of objects and their relationships. The

focus on objects enables us to build semantic location graphs, which bridge neural

perception and symbolic planning modules. Our work also proposes a new open-

loop replanning approach that focuses on the egocentricity of planning agents by

interleaving exploration and planning. We tested our method in semantic navigation

tasks in virtual environments specified in AI2Thor. Our results demonstrate the pro-

posed framework is sample efficient with explainability similar to traditional symbolic

methods.

Chapter 4 outlines our method of converting classical planning problems to ego-

centric alternatives. We use an object-centric representation of the state space by
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formulating the world as objects and their relationship. Our algorithm specifies a

set of exploration goals and exploration actions to conduct information gathering

when the original objective is deemed unachievable. Our method can solve several

open-world problems where the existence and count of objects are unknown prior

to planning. We evaluated our method on a variety of classical planning problems,

and our results demonstrate that the proposed method is sufficient to address the

egocentricity of classical planning problems in a semi-automatic manner.

In Chapter 5 we proposed a Semantic Spatial Graph to bridge the representation

gap between outputs of neural segmentation networks with the egocentric planner

we presented in Chapter 4. We then tested a implementation of our planning-based

neural symbolic framework on the object navigation tasks in a virtual home environ-

ment built with AI2-THOR. We chose YOLO as the sensory module to extract object

information from an agent’s egocentric visual input. The information is stored in an

expanding Semantic Spatial Graph, which stores both location and object information

in its nodes. The graph is then converted to a planning problem as initial inputs of

our proposed Egocentric Planner. The planner then monitors an agent’s observation

and knowledge of the state space to goal-oriented explorations. Through empirical

experiments, we have shown that our proposed framework can achieve near-optimal

policies for simple object navigation tasks. We also tested our methods on long-

term sequential decision tasks and achieved results significantly better than existing

end-to-end approaches on the ALFRED dataset.

Our framework serves as a crucial first step towards planning-based embodied

agents that can act autonomously in unknown environments. We have successfully

demonstrated the feasibility of a hybrid neural-symbolic system. Furthermore, we
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addressed problems of egocentricity in automated planning methods and proposed

an object-centric way to bridge the representation gap between neural and symbolic

methods. We hope our contribution in this thesis encourages further development of

hybrid neural symbolic systems.

7.2 Limitations

Due to the recent successes in deep reinforcement learning, embodied agent tasks are

often framed using an RL framework where rewards are hand-engineered for each

task. However, most state-of-the-art RL methods require billions of sampled steps to

learn a feasible policy for embodied problems such as object navigation. The hard-

ware requirement to reproduce these deep RL methods in our setting is beyond the

capability of our equipment. Thus, we chose to compare our results against what

is being reported rather than reproducing these RL models. Another limitation is

the complexity of the classic planning benchmark we used in the egocentric planning

framework. These classic benchmarks are simplified versions of real-life problems

which are much more complex and task-dependent. These application-specific plan-

ning problems are inaccessible to us, and further adjustment of our approach might be

required depending on the application. Finally, the testing environment we chose to

use is AI2-THOR which uses discrete actions in virtual home environments. Thus our

approach has not yet been tested on systems with continuous control. Although our

framework is viable for higher-level reasoning tasks, integration with existing control

systems is vital to deploy our method in real-life embodied applications.
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7.3 Future Work

Although we have shown the feasibility of building a planning-based neural symbolic

embodied agent for object navigation tasks, many open questions and areas of im-

provement need to be addressed for real-life applications. One of the future directions

we would like to explore with egocentric planner is applying dead-end detection tech-

niques such as [31] to avoid actions that cause dead-ends. We want to integrate the

agent’s original goal with exploration for more goal-oriented exploration strategies.

In this work, we only tested our method on classical planning domains. These do-

mains are not representative of real-life planning settings. We want to eventually

apply our techniques in embodied egocentric agent design to solve planning problems

such as in [42]. Another potential improvement is for the exploration strategy we

used. Currently, we use the exploration action produced directly by the planner,

which is often the closest unexplored node to our agent’s current location. However,

goal-oriented knowledge such as object occurrence could produce a much better ex-

ploration strategy than the naive approach. We want to explore learning this policy

using heuristic search techniques or through RL-based methods in the future. Finally,

we have only implemented our full method for object navigation tasks. One future

direction is to solve more complex tasks that require higher-level reasoning. Tasks

such as rearranging items in a room or performing daily chores such as cooking are

currently unsolvable problems for end-to-end neural networks. We hypothesize that

by converting a visual environment to a symbolic representation, we can perform

the higher-level cognitive tasks using a logical reasoning system such as automated

planning.
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