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Abstract. Understanding how agents behave in an environment is a
cornerstone of interpretable AI. In this work, we focus on capturing and
summarizing the policy an agent is following without placing any as-
sumptions on how that policy is actually implemented. From a corpus
of state-action pairs, we build a compact and diagnosable representation
of the mapping from states to actions. We appeal to modern knowl-
edge compilation techniques for this task and demonstrate empirically
how this approach outperforms the previous state of the art. We further
create an interactive interface to allow people to explore the compiled
representation and develop their mental models of the policy. Interface,
implementation, and evaluation will be released in full upon publication.
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1 Introduction

Understanding an agent’s behaviour is a key challenge in Artificial Intelligence.
Successfully doing so could have far-reaching implications in multi-agent sys-
tems, business process mining, and general dynamical system diagnosis. The
introduction of the European regulation GDPR bolstered demand for explana-
tion of algorithmic decision making and paved the pathway toward explicit “right
to an explanation” laws [6]. Our work contributes to explainable AI and directly
addresses the problem of understanding an agent’s policy.

Broadly speaking, our task is to succinctly capture the mapping of states
to actions that the agent is using given only historical data: not only can this
provide gains in efficiency for exploring the policy, but it can also elucidate key
properties of the agent’s policy that are only evident by observing their behaviour
holistically. Crucially, we make no assumption on the precise mechanics of the
agent’s policy implementation: it could be a simple program, a neural network
approach that is mapping states to actions, or even a human agent with uncertain
policy modeling. The agent in this setting is a black box.
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True True turn on stove
False True turn off stove
False False fill pot
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B W ¬fill ¬off on

(b) Compiled d-DNNF

∨
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¬B ¬fill off ¬on

∧

B ¬fill ¬off on

(c) Conditioned on W

Fig. 1: Example policy compilation. B, W, On, Off, Fill respectively correspond to
Boiling Water, Water In Pot Turn On Stove, Turn Off Stove, and Fill in pot.

In this work, we assume a shared syntax for the acting agent and the observed
behaviours: the fluents in the state of the world and in the actions executed are
known and common to both agent and observer.

Our framework closely follows the work of Hayes and Shah [7]. The key dis-
tinction of our work is the computational core we employ for compiling the policy.
Hayes and Shah’s approach relies on the Quine-Mcluskey minimization method
for logical inference, which results in an exponential computational blow-up.
We instead appeal to state-of-the-art knowledge compilation methods and use
disjunctive decomposable negation normal form (d-DNNF) as the key represen-
tation [5]. We found that d-DNNF provides a necessary mix of compactness,
computationally efficient compilation, and expressive inference capabilities.

We view the historical data of state-action tuples as clauses in a particular
logical theory, e.g., disjunctive normal form (DNF). We then compile this theory
to various forms of conjunctive normal form (CNF). From the CNF representa-
tion, we then use off-the-shelf compilers to produce a d-DNNF representation to
capture salient properties of the policy. For example, consider the observation
list in Figure 1a and the corresponding d-DNNF representation in Figure 1b.

An added benefit of using d-DNNF as the core representation is that a wide
variety of subsequent inference questions remain polynomial in the size of the
representation. This allows us to pay the initial cost of compiling the policy only
once, and then interactively condition the policy to answer questions such as
“When would the agent perform action X?” or “What would the agent do if Y
was true and Z false?”. We captured this functionality in an interface equipped
to handle such human-in-the-loop policy exploration.

Knowledge compilation technology has a long history of practical advances
that make it a competitive solution to settings of logic-based inference. We
demonstrate the improvement this lends our approach by comparing with the
previous work in this specific setting of agent behaviour modeling, tested on a
variety of domains from planning and RL. We also provide an empirical com-
parison among the different CNF varieties that we investigated in the context
of this work, pointing to the preferred method of compilation.

We begin by detailing some of the preliminary concepts we employ. Next,
we present the core encodings to CNF that we consider in Section 3 and follow
with an empirical evaluation in Section 4. We conclude with a look at related
literature and a summary including future directions in Sections 5 and 6.
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2 Preliminaries

2.1 Policy Learning

Despite the recent success of decision-making agents, these agents are usually
complex and uninterpretable due to their requisite handling of high dimensional
inputs and outputs. Gaining insight into the behaviour of such systems is nec-
essary to provide explanation to users (e.g., for prescription recommenders),
to facilitate debugging, and to unveil the strengths and weaknesses of agents.
Our goal is to reason over an agent’s decisions and answer questions about its
underlying logic independent of its internal processes. We restrict our work to
discrete domains of both states and actions. Of course, one might use techniques
of discretization to parse continuous to discrete domains.

We assume we observe the state as fluents f ∈ F . We denote the state-space
(environment) as S ⊆ 2F and a particular state of the world to be s ∈ S. We
use A to represent the action space and a ∈ A to specify an action. Let a state-
action observation be a tuple 〈s, a〉 and our data be D = {〈s1, a1〉, ..., 〈sm, am〉}.
The problem we address is to succinctly represent the mapping P : S → A.

The curse of dimensionality prohibits the naive approach of obtaining a map-
ping from states to actions in a big lookup table of the state-action pairs. Some
efforts to solve this problem use Quine-Mcluskey minimization [7], Bayesian
probabilistic models [9], among others. See more related work in section 5. We
propose using Knowledge Compilation to overcome this computational burden,
and explore a variety of possible encodings to accomplish this task.

2.2 Knowledge Compilation

The objective of Knowledge Compilation is to build a structured representation
of logical theories to allow for subsequent tractable operations. The idea lies
primarily on compiling a propositional theory off-line into a target language,
which then is used on-line to perform fast operations and reasoning. In the
context of our work, we use deterministic decomposable negation normal form (d-
DNNF) as our target language. This language allows polynomial time operations
(on a pre-compiled theory) such as conditioning and model counting which are
the core for our inference and interaction tool. Although the off-line compilation
process may be computationally expensive, it is just performed once.

Negation Normal Form (NNF) Many languages in Knowledge Compilation
are subsets of NNF [5]. In NNF, the only allowed Boolean operators are conjunc-
tion (∧ , and) and disjunction (∨, or). The negation operator (¬, not) is only
applied to variables. A common and practical representation of NNF languages
is to construct a directed acyclic graph (DAG). In this graph, inner nodes are
either conjunction or disjunction and the leaves are positive or negative vari-
ables. Denote Σ as a propositional theory (a DAG). Let C be any node in Σ
and Vars(C) the set of variables appearing in the subgraph rooted at C.
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Fig. 2: Overall approach for compiling agent behaviour into a form for inspection.

Disjunctive Normal Form (DNF) This language consists of a disjunction
of conjunctions (or of and’s). Its DAG is flat, meaning that the distance from
root to any leaf is 2. We use this language to represent our data D. For each
state-action pair 〈si, ai〉 we construct a clause Ci, then take the disjunction over
all of the Ci’s. See first step in Figure 2.

Conjunctive Normal Form (CNF) In similar fashion as above, CNF is a
conjunction of disjunctions (and of or’s) whose DAG is also flat (Figure 2). The
purpose of using this intermediate language between our data (DNF) and target
(d-DNNF) is twofold. (1) To use efficient off-the-shelf CNF−→d-DNNF compilers
such as Dsharp [13], c2d [4] or D4 [10], and (2) to allow for encoding with the
different properties (cf. Table 1) which we elaborate in section 3.

Deterministic Decomposable Negation Normal Form (d-DNNF) This
language requires two additional characteristics over a general NNF: decompos-
ability and determinism. The objective of imposing such properties is to allow
for fast on-line inference. In particular, the ability to perform the operations
of model counting and conditioning in polynomial time over the propositional
theory. We now present the definitions [5] of such properties.

Definition 1 (Decomposability). An NNF satisfies the decomposability prop-
erty if for any conjunction C, the conjuncts of C do not share any variable. If
C1, ..., Cn are children of an and node C, then Vars(Ci)∩Vars(Cj) = ∅ for i 6= j.
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Definition 2 (Determinism). An NNF satisfies the determinism property if
for any disjunction C, every pair of disjuncts of C are logically contradictory.
That is, if C1, ..., Cn are children of an or node C, then ∀i, j ∈ [1, ..., n] where
i 6= j, Ci ∧ Cj = False.

The logic structure of d-DNNF enables counting the number of models in a
propositional theory in polynomial time. Without loss of generality, it is possible
to count the number of models of a d-DNNF Σ by replacing the or nodes by
additions, the and nodes by products, and leaf nodes by 1. The NNF must also
be smooth to obtain a normalized count. Refer to [5] for further details.

Definition 3 (Conditioning). Let Σ be a deterministic decomposable NNF (d-
DNNF). Conditioning on variable x, i.e. Σ|x, results in the DAG computed by
replacing x by True and ¬x by False and propagating this information through-
out the DAG using standard logical rules. For example, if Σ = (x∨y)∧ (¬x∨z),
then, Σ|x = (True ∨ y) ∧ (False ∨ z) which simplifies to z.

Through the combination of conditioning and counting, the likelihood of a
particular variable can be computed as:

Pr(x = True) =
count(Σ|x)

count(Σ)

3 Approach

The overall approach is shown in Figure 2. The initial step defines a CNF encod-
ing for the historical data of state-action pairs. We consider a variety of possible
encodings for this, and explore the ramifications of each.

The remaining steps use a compiler to convert from CNF to d-DNNF; option-
ally apply conditional inference on the resulting compilation; and then return
both the resulting theory and probability distributions as part of a targeted
response. For the compilation, we found Dsharp [13] to be the most efficient
option for these encodings (with comparisons made to c2d [4] and D4 [10]).

We begin by looking at the core encoding components considered in 3.1,
followed by the properties of the resulting theory in 3.2, and conclude this section
with a discussion of the inference and interaction components in 3.3.

3.1 Encoding

Common to all of the encodings is the set of boolean variables that are used
to represent the historical data (some encodings will introduce further auxiliary
variables, and are discussed later). We begin by defining the two core variable
types before expanding on the variety of encoding options.
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Definition 4 (Fluent and Action Variables). For every fluent f ∈ F , we
associate a boolean variable xf to represent the notion that f was true in a
state. For every action a ∈ A, we associate a boolean variable xa to represent
the notion that the agent performed action a.

We define four encoding options that can be mixed and matched to produce a
theory with a variety of properties. We begin by providing one complete example,
and then elaborating on the four orthogonal variations that can be deployed.

Definition 5 (Base Encoding). Assume D is a set of tuples of the form 〈s, a〉
where s ⊆ F and a ∈ A. The Base Encoding is defined as:

∨
〈s,a〉∈D

xa ∧ ∧
a′∈A\{a}

¬xa′ ∧
∧
f∈s

xf ∧
∧
f 6∈s

¬xf

 (1)

There are four key parts to each term of the base encoding: (1) the action
a must be the one we select; (2) no other action is selected; (3) all of the true
fluents in s must be true in the encoding; and (4) all of the false fluents (i.e.,
those not in s) must be false in the encoding. The target language for knowledge
compilation is CNF, however the theory in Definition 5 is in Disjunctive Normal
Form (DNF). To remedy this, we apply the well-known Tseitin encoding [17].
Doing so introduces a new auxiliary variable, xt, for each term t in the DNF
above, and the CNF contains clauses of the following form for each term t:

Assuming t = (x1 ∧ · · · ∧ xn)

xt → (x1 ∧ · · · ∧ xn)

¬xt ∨ (x1 ∧ · · · ∧ xn)

(¬xt ∨ x1) ∧ · · · ∧ (¬xt ∨ xn)

(x1 ∧ · · · ∧ xn)→ xt

¬(x1 ∧ · · · ∧ xn) ∨ xt
(¬x1 ∨ · · · ∨ ¬xn ∨ xt)

One final clause is included to indicate that at least one of the conjunctive
terms (t1 · · · tm) is true: (xt1 ∨ · · · ∨ xtm) We examine this encoding’s properties
later in Section 3.2, but now turn our attention to the variations of the theory.

Onehot (OH) The base encoding ensured two things for each tuple in the
data D with respect to the actions: (1) the appropriate action executes and
(2) no other action does. We refer to this combination of terms as the onehot
variant. When disabled, we only adopt point (1), and forgo mentioning the other
actions which were not executed. This fundamentally changes the theory, but,
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in combination with other encoding varieties, may be useful in practice. By
disabling the onehot property of the base encoding, we have:

∨
〈s,a〉∈D

xa ∧ ∧
f∈s

xf ∧
∧
f 6∈s

¬xf

 (2)

Implication (IMP) The relationship in the base encoding between the state
and the action is via a conjunction. If instead we viewed the theory as a set
(conjunction) of implications between the state and the actions that were exe-
cuted in them, then we arrive at the following theory (by using the implication
encoding for Formula (2)):

∧
〈s,a〉∈D

∧
f∈s

xf ∧
∧
f 6∈s

¬xf

→ xa


=

∧
〈s,a〉∈D

¬
∧

f∈s

xf ∧
∧
f 6∈s

¬xf

 ∨ xa


=
∧

〈s,a〉∈D

∨
f∈s

¬xf ∨
∨
f 6∈s

xf ∨ xa

 (3)

At Most One Action (AMOA) As an option that can be combined with
any of the previous encodings via a simple conjunction, we consider enforcing
the notion that at most one action can be executed. This is achieved by adding
a binary clause for every pair of unique actions to the theory:∧

a∈A

∧
a′∈A\{a}

(¬xa ∨ ¬xa′) (4)

Since it is already CNF, combination with other theories is simply a conjunction.

At Least One Action (ALOA) Similar to AMOA, we use a single clause
enforcing at least one action be executed:∨

a∈A
xa (5)

With the conjunction of (4)+(5), the theory ensures exactly one action is true.

3.2 Properties

With four encoding varieties, there are in fact 24 possible encodings to consider:
every combination of settings yields a viable encoding with different properties.
Here, we identify the three key properties that dictate the space of possible
boolean functions, and describe how the encoding varieties lead to the combina-
tion of properties.
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CNF Encoding Properties

AMOA ALOA OH IMP
All states
covered

Deteministic
behaviour

Liveliness

X X X X X X X

X X X X X X

X X X X X

X X X X

X X X X X

X X X X

X X X

X X

X X

X

X X X X X

X X X X

X X X X

X X X

X X X X

X X X

Table 1: Implications of combinations of CNF encodings on the theory’s properties.

State Coverage The first property refers to the states captured by the boolean
theory. That is, when viewed as a policy mapping states to actions, is the pol-
icy complete or partial. This property directly follows from the choice of using
IMP or not in the encoding. If it is used, then the theory allows for any state
assignment, and only constrains the space of possible actions when one of the
observed states is used.

If IMP is not used, then only those states that have been seen in the ob-
servation history are possible. Any state configuration that was not seen before
would immediately lead to an inconsistency of the theory.

Policy Determinism The next property is policy determinism: it holds when
at most one action is possible in any assignment that includes a complete state.
When this does not hold, the theory represents a non-deterministic policy where
a single state may map to multiple actions. This property is guaranteed by
AMOA, but can also be achieved through the right combination of the remaining
three encoding varieties.

Policy Liveliness The final property is that of liveliness: this holds when
every complete assignment to the variables in the theory includes at least one
true action variable. ALOA by itself can ensure this, as can not using IMP.

Relation of Encodings to Properties The full span of encoding varieties,
along with their respective properties, can be found in Table 1. Depending on the
application, various properties may be desired. Here, we consider the following:

1. Not all states covered: We choose to focus on only capturing a compact
policy for those states that were observed in the data D. Relaxing this would
realistically require further encoding elements that describe what reasonable
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states might look like (perhaps through the use of invariants on the reachable
states themselves).

2. Deterministic policies: For now we assume that the agent behaviour is
deterministic. Given the computation core of model counting, it is natural
to consider extending this to weighted model counting and allow for a prob-
ability distribution over the actions in a particular state, but we leave this
extension to future work.

3. Lively policies: Again, as a simplifying assumption, we assume that the
agent will always execute some action in a state. This follows directly from
the fact that we consider only the states in the observation data, and every
such state has an accompanying action.

These three properties leave us with the final 6 rows in Table 1. Note that
the boolean theories that each of these six encodings represent are semantically
equivalent: a model of any one theory is a model of all theories. It is these six
encodings that we evaluate further in Section 4.

3.3 Inference and Interaction

Unlike the previous approach which compiles a query along with the base theory
simultaneously, we appeal to the standard practice in knowledge compilation of
amortizing the cost of many queries over a single compilation. The encodings
presented in the previous section are used to generate a CNF which is compiled to
a d-DNNF representation, which we can then subsequently evaluate and explore
interactively. In this work, we focus on two key types of queries:

1. When would you do action X?
2. What action would you do when the state looked like Y?

Both types of queries can be addressed using the same technique of condi-
tioning on the compiled d-DNNF representation. The assumptions are used to
refine the d-DNNF structure, and the query response takes the form of both the
resulting d-DNNF after simplification; and the probability distribution of the
remaining possibilities for fluents and actions. Both follow standard procedures
for d-DNNF processing [5], and are polynomial in the representation size.

Figure 3 shows a portion of the interactive interface we developed. The theory
is conditioned by having one fluent assumed to be false, and provides interactive
capabilities to explore the remaining models of the theory. Functionality allows us
to collapse / expand individual components of the graph, adjust the conditioning
via the leaf nodes (both fluent and actions are represented), zoom/pan through
the representation, etc. We found this interactive nature to be vital in providing
a thorough understanding of the policy.

Figure 4 shows the interface for the aggregate statistics on the likelihood of
each fluent and action. Note that the actions are mutually exclusive, and sum to
100%. The percentage represents the proportion of all remaining models where
the fluent is true (respectively, the action is executed).
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Fig. 3: Conditioned d-DNNF from the interactive interface (one fluent set false).

(a) Assuming spare-in(l-2-2) is false. (b) Assuming not-flattire() is false.

Fig. 4: Screenshots of the (a) fluent and (b) action likelihood interface.

Having both the d-DNNF structure and the aggregate likelihood statistics
provides a more holistic view of the policy. The interactive nature is enabled
entirely by the amortized view of knowledge compilation – each conditioned
operation is computationally efficient given the time invested in computing the
d-DNNF in the first place. Next, we explore this computational trade-off in a
detailed evaluation.

4 Evaluation

We have two objectives in evaluating the proposed work: (1) to contrast the
various encodings that yield the desired properties, and (2) to assess the per-
formance of our approach compared to the previous method for computing a
policy and answering queries. We start by describing the domains we consider,
and then discuss each evaluation in turn.

4.1 Benchmark Domains

The benchmarks come from two main sources and serve as an illustration that the
actual model with which the policy is derived or implemented does not impact
our ability to capture the behaviour and interact with it. All that is required is
the history of state-action pairs that was observed.
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domain problem |F| |D| TTT TTF TFT TFF FTT FFT

blocks
p1 57 8000 201.06 174.44 179.07 172.42 178.44 181.60
p2 162 15462 2118.99 2127.40 2042.14 2168.94 2211.26 2203.89
p3 162 15274 4037.63 3960.20 3981.17 4046.17 3855.21 4105.49

elevators
p1 104 17000 175.02 172.38 151.51 157.61 155.16 155.76
p2 295 21268 586.80 548.14 638.24 590.61 623.68 559.14
p3 606 32446 2326.83 2071.53 2390.38 2037.47 2198.62 2224.04

tireworld
p1 100 2767 110.90 109.98 111.80 109.22 105.06 106.04
p2 676 5742 1673.18 1660.00 1735.03 1735.55 1796.80 1747.09
p3 2500 8714 24525.47 21779.88 24069.43 22773.28 27803.93 27067.64

traffic
p1 8 4321 626.85 671.58 725.57 652.81 700.97 700.22
p2 56 4343 38829.05 35808.71 40226.23 31715.28 36813.25 37510.06
p3 88 4276 126846.23 107324.01 121747.51 110445.90 129135.73 107180.19

Table 2: Median compilation times (ms) over 10 trials for the 6 encodings of in-
terest (cf. Section 3.2). The column label for each encoding follows the pattern
(AMOA?)(ALOA?)(OH?) – e.g., TFT indicates that AMOA and OH were used, but not
ALOA. We also report the number of fluents (|F|) and size of corpus (|D|). Bold
indicates best performing encoding.

Planning-Based The first three domains come from the widely available fully
observable non-deterministic (FOND) planning benchmark suite. We obtained
both the benchmark problems and solutions from the FOND planner PRP [12]
using the first few instances in each domain. Note that while the environment
itself is non-deterministic, the computed policies are not. That is to say, given a
particular state of the world the policy computed by the planner will only ever
return a single action (or no action if the state is unreachable).

We generated several traces by repeatedly simulating the found policy from
the initial state until the goal condition was reached. Each of the three domains
– exploding blocksworld, elevators, and triangle tireworld – had three problems
of varying difficulty included.5

Deep Reinforcement Learning Based The final benchmark corresponds to
a learned policy for controlling the traffic lights at an intersection, as introduced
by [18]. The controller chooses between four different actions (see Figure 5) by
observing the presence of a vehicle on a cell (lane segment). The three prob-
lems correspond to increasing the number of cells per incoming lane (i.e. the
higher the problem number, the more segments further from the intersection
that are observed). The policy is a neural network learned using standard deep
reinforcement learning techniques (which are beyond the scope of this paper).

The states correspond to the traffic conditions on the roads (i.e., the road
segments occupancy) while the actions correspond to the various light configura-
tions (advanced left, straight through, etc). The policy was trained to minimize

5 Despite the naming convention, the problems listed do not correspond to the first
three problems of the published benchmark set.
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Fig. 5: Example scenario for the traffic-light domain.

the commutative waiting time of vehicles, and an example scenario is shown in
Figure 5 with the road segments shown.

For both the method of generating a policy and its representation, there is a
large contrast between the planning-based domains and the traffic-light domain.
The observed behaviour, however, is the same: discrete state-action pairs.

4.2 Impact of Theory

Given the properties that we desire (cf. Section 3.2), we investigate the efficiency
of compiling the 6 theories that capture the properties precisely. We found that
the encoding time was negligible for each of the encodings (at most 1-2 seconds
for problems that took minutes to compile). Subsequently, we only report on the
time to compile the theory.

Table 2 details the median compilation time over 10 runs for each problem
and theory combination. We additionally report the number of fluents in the
domain (|F|) and the size of the corpus used (|D|). Each of the encodings is
described using the pattern (AMOA?)(ALOA?)(OH?) – e.g., TFT indicates that
AMOA and OH were used, but not ALOA.

All of the encodings performed similarly across the domains, which is to be
expected given that they are computing the same boolean function and share a
common core. However, the configuration TTF did stand out as a top performer:
either outperforming all of the other encodings or coming in a close second.
Note that the ALOA clauses are redundant here, as the encoded theory already
indicates which action has occurred for every observed state, and no other state
is permitted. This phenomenon of redundant constraints improving the efficiency
has long been observed in the constrain programming literature [2].

For the subsequent comparison with a previous approach to computing agent
policies, we use this setting, as it was found to generally outperform the others.
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4.3 Comparison to Previous Approach

Hayes and Shah [7] similarly demonstrated a system to summarize a robot’s
behavioral policy as a logical explanation, using a pre-defined vocabulary of
boolean predicates. Their system likewise requires the generation of behavior
traces detailing each state experienced and action undertaken by the agent:
(si, a). Given a state s, their system evaluates which boolean predicates are sat-
isfied and which are not: (True Predicates(s), False Predicates(s)). From
these traces, Hayes and Shah formulate the policy summarization as a set cover
problem, which results in the generation of a logical summary for each given
behavior. Hayes and Shah’s technique uses Quine-McCluskey (QM) to perform
the boolean minimization step to solve the set cover problem. In relying on this
computationally-intensive boolean minimization process, Hayes and Shah’s tech-
nique is limited in scale. In comparison, our approach scales by taking advantage
of the compact nature of d-DNNF.

We implemented Hayes and Shah’s technique for comparison. We apply their
QM-based approach to the smallest problems in the four domains presented
previously using two queries about when an action would occur and two queries
to explain which action will be used given a partial state. These two approaches
provide different styles of policy explanations: the QM method listing a series of
minterms (i.e., a form of DNF) while our method lists both the compiled d-DNNF
structure as well as the normalized action and fluent likelihoods (cf. Figure 4).
Here, we assess only the quantitative differences in the compute required.

The results are shown in Table 3. The actual queries used are presented in
Appendix A. For both approaches, we use the same preprocessing step to remove
static fluents and unused actions from the data. All of the times are listed in
milliseconds, and the timeout for QM was set to one hour.

domain query QM compile condition

blocks

Q1 TO

199.56

41.48
Q2 TO 37.03
Q3 TO 34.86
Q4 TO 43.23

elev

Q5 TO

147.32

37.20
Q6 TO 29.58
Q7 TO 44.50
Q8 TO 32.14

tire

Q9 189.79

133.47

24.44
Q10 175.38 32.25
Q11 361.95 25.24
Q12 191.37 27.13

traffic

Q13 1167.09

499.75

72.85
Q14 TO 74.69
Q15 135.05 118.52
Q16 9.64 75.55

Table 3: Comparison between our approach (compile and condition columns) with
the previous approch (QM column). Queries are provided in Appendix A. Times are
provided in milliseconds, and a 1-hour time-out (TO) was used.
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We separate out the compilation and conditioning time for our approach, as
the compilation to d-DNNF need only occur once. We found that the condition-
ing time was indeed very fast, with only one query taking longer than 100ms. In
contrast, several of the queries cannot be solved by the QM method within the
one hour limit. Ultimately, we found our approach to be a necessary alternative
for problems of reasonable size.

As a final analysis, we consider the original trace as DNF directly. We filter
the original trace data with a similar preprocessing step to remove static fluents
and unused actions, and we treat the remaining state-action pairs as DNF. As
this form of DNF is a subset of d-DNNF, the same analysis can be applied.
Without the CNF encodings, we found that generally the queries (at least for the
modest sized problems and queries considered in Table 3) took roughly twice as
long in this brute-force approach. The resulting theories (i.e., after conditioning
for each query) ended up being 5-10 times larger. Not only is the representation
much larger, but there is no structure contained in the flattened representation.
Subsequent conditioning and interaction would be slower given these resultant
theories, and we expect further performance degradation for larger problems.

5 Related Work

The AI and planning communities are motivated to design explainable mod-
els and techniques to understand existing uninterpretable models. In an effort
to replace black box classifiers, Wang et al. infer “OR of ANDs” models for
classification [19]. They randomly generate a disjunctive normal form pattern
set and then consider any misclassified inputs. If the sample is a false positive,
they update their pattern set by decreasing coverage; if the sample is a false
negative, they update their pattern set by increasing coverage. Their inference
technique is constrained by user-defined priors; for example, such priors may
limit the number of clauses and the length of each conjunctive clause. Simi-
lar approaches for mining policy explanations from datasets or classifiers have
been explored by Rudin et al. [15], McCormick et al. [11], and Cheng et al. [3].
While these approaches enable scalable computation through reliance on strong
priors, our approach uses advances in knowledge compilation to facilitate scal-
ability. Further, while these approaches consider individual classification tasks,
our approach considers time-series data.

An alternate approach for providing policy explanations is to provide ex-
ample trajectories to demonstrate how an agent will behave. Amir and Amir
create such a policy explanation tool, which extracts ‘important’ trajectories
from simulations of an agent [1]. Huang et al. similarly generate trajectories
to communicate to a human how an autonomous system will act in novel sit-
uations [8]. While these approaches are better suited to time-series data, it is
unclear how trajectories can be effectively used as a communication medium. In
contrast, the structure of d-DNNF means that we can readily ask the question,
“When would the agent perform action X?” and expect a meaningful answer.
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Policy summarization is also essential in planning contexts. Humans often
want to understand the rationale behind plans, how plans were generated, and
how plans compare. Kim et al. provide contrastive explanations for how two
plans differ by using a Bayesian probabilistic model to infer linear temporal logic
specifications [9]. Seegebarth et al. create a plan explanation prototype which
uses first-order logic and requires knowledge-rich plans [16]. Myers developed an
approach for communicating differences between plans; their method relies on
summarization for Hierarchical Task Networks [14]. However, these approaches
are restricted to relatively short plans with specific goals, and build on causal
information that we make no presumption of having access to. Additionally, such
techniques cannot be readily extended to the scale we are capable of addressing.

6 Conclusion

Facilitating appropriate trust in autonomous systems is a major priority of
academia and government. We present one such technique for policy evalua-
tion, which is scalable and agnostic to the autonomous system under considera-
tion. We introduce a method of policy learning from historical agent behaviour
through the lens of modern knowledge compilation. We view the historical data
as a logical theory, define a family of encodings, and explore a unified subset
of these encodings to capture desired properties. In addition to the logic-based
framework, we create an interactive experience to explore the compiled policy
through iterative refinement and conditioning. The interface additionally pro-
vides statistics on the likelihood of each fluent or action given the assumptions.

We empirically evaluated the efficiency of our approach based on modern
knowledge compilation, and found it scaled far better than the previous approach
dedicated to the same setting. Following the trend in knowledge compilation, a
major advantage of our work is the amortized gains: after compiling the data
once, we can repeatedly query for various conditions in polynomial time wrt. the
size of the compiled representation. This translates to a near-realtime response
for each query, and enables the interactive interface. Our work represents a sub-
stantial improvement in policy learning and explanation. It additionally serves
as a foundation for further exploration of the logical theory.

Future Work The next area to explore is relaxing the assumption of determin-
ism. When the agent behaves probabilistically, the theory changes and so would
the compilation. In this case, repeated data cannot be compressed to a single
data point. We assert that weighted model counting may enable nondeterminism.

The next property to consider is all states vs. observed states. To generalize
beyond the precise states observed, this property must be relaxed. This may have
the effect of relegating the statistics with vast amounts of equivalent inconsistent
states. Incorporating state invariants from the domain may be helpful.

Finally, we would like to investigate a richer set of queries that include “Why
didn’t you do X?”. We believe that there is a rich space of query types and tech-
niques that can be addressed by operating over the d-DNNF structure directly.
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A Tested Queries

The following queries correspond to Table 3.

Q1: When would you do pick-up_b5_b4?

Q2: When would you do pick-up-from-table_b3?

Q3: What do you do when on-table(b2) & on-table(b3) & detonated(b2) holds?

Q4: What do you do when detonated(b2) & detonated(b3) & on(b3 b2) holds?

Q5: When would you do collect_c2_f2_p2?

Q6: When would you do go-up_e2_f1_f2?

Q7: What do you do when have(c2) holds?

Q8: What do you do when at(f1 p1) holds?

Q9: When would you do move-car_l-2-1_l-3-1?

Q10: When would you do changetire_l-2-1?

Q11: What do you do when vehicle-at(l-2-1) holds?

Q12: What do you do when spare-in(l-2-2) doesn’t hold?

Q13: When would you do PHASE_NS_GREEN?

Q14: When would you do PHASE_NSL_GREEN?

Q15: What do you do when car_in_S-G0_0-7 holds?

Q16: What do you do when car_in_S-G0_0-7 & car_in_W-G0_0-7 holds?


