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Abstract
Temporal logics are useful for providing concise
descriptions of system behavior, and have been suc-
cessfully used as a language for goal definitions in
task planning. Prior works on inferring temporal
logic specifications have focused on “summariz-
ing” the input dataset – i.e., finding specifications
that are satisfied by all plan traces belonging to the
given set. In this paper, we examine the problem of
inferring specifications that describe temporal dif-
ferences between two sets of plan traces. We for-
malize the concept of providing such contrastive
explanations, then present BayesLTL – a Bayesian
probabilistic model for inferring contrastive expla-
nations as linear temporal logic (LTL) specifica-
tions. We demonstrate the robustness and scala-
bility of our model for inferring accurate specifica-
tions from noisy data and across various benchmark
planning domains.

1 Introduction
In this paper, we examine the problem of generating expla-
nations for how two sets of plans differ in behavior. We fo-
cus on generating such contrastive explanations by discover-
ing logical specifications that are satisfied (entailed) by one
set of plans, but not the other. Prior works on plan explana-
tions include those related to plan recognition for inferring la-
tent goals through observations [Ramırez and Geffner, 2010;
Sohrabi et al., 2016], works on system diagnosis and excuse
generation in order to explain plan failures [Göbelbecker et
al., 2010], and those focused on synthesizing “explicable”
plans – i.e., plans that are self-explanatory with respect to
a human’s mental model [Zhang et al., 2017]. The afore-
mentioned works, however, only involve the explanation or
generation of a single plan; we instead focus on explaining
differences between multiple plans, which can be helpful in
various applications, such as the analysis of competing sys-
tems, classification of user-groups, and detection of anoma-
lies.

A specification language should be used in order to achieve
clear and effective plan explanations. Prior works have con-
sidered surface-level metrics such as plan costs and action (or
causal link) similarity measures to describe plan differences

[Nguyen et al., 2012; Borgo et al., 2018]. In this work, we uti-
lize Linear Temporal Logic (LTL) [Pnueli, 1977], which is an
expressive language for capturing temporal relations across
state variables. Planning is sequential, so temporal properties
can offer greater expressivity and explanatory power for de-
scribing the high-level behavior of plans than static facts. We
use plans’ individual satisfaction (or dissatisfaction) of LTL
specifications in order to describe their differences.

LTL specifications have been widely used in both indus-
trial systems and planning algorithms to compactly describe
temporal behavior [Yang et al., 2006]. Their declarative and
compositional structure allows a straightforward translation
to natural language, and inversely, LTL can be derived from
natural language directives [Dzifcak et al., 2009]. Experi-
ments also suggest that LTL formulas serve as natural pat-
terns when encoding high-level human strategies as planning
constraints [Kim et al., 2017].

Although a suite of LTL miners have been developed for
software engineering and verification purposes [Yang et al.,
2006; Lemieux et al., 2015; Shah et al., 2018], they primarily
focus on mining properties that summarize the overall behav-
ior on a single set of traces. Recently, SAT-based methods
have been introduced to construct a LTL specification that as-
serts contrast between two sets of traces [Neider and Gavran,
2018; Camacho and McIlraith, 2019]. These exact learning
algorithms, however, are designed to output a single minimal-
length formula, and are susceptible to failure when the in-
put dataset contains imperfect traces. We examine a simi-
lar problem of mining contrastive explanations between two
input sets, but adopt a probabilistic approach — we present
BayesLTL, a Bayesian inference model that can quickly gen-
erate multiple explanations while demonstrating robustness
to noisy input. This is important for real-world applications,
where traces can contain noise not only from sensors and but
from unintended user behavior (e.g., backtracking, misclick-
ing on a page). BayesLTL permits scalability when searching
in large hypothesis spaces and allows flexibility in incorpo-
rating various forms of prior knowledge and system designer
preferences during search. We demonstrate the efficacy of our
model for extracting multiple accurate explanations on noisy
traces across various benchmark planning domains and for a
simulated air combat mission.
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2 Related Work
Plan explanations are becoming increasingly important as au-
tomated planners and humans collaborate. This first involves
humans making sense of the planner’s output, where prior
work has focused on developing user-friendly interfaces that
provide graphical visualizations to describe the causal links
and temporal relations of plan steps [Seegebarth et al., 2012;
Magnaguagno et al., 2017]. These systems, however, require
an expert for interpretation and do not provide a direct expla-
nation as to why the planner made certain decisions to realize
the outputted plan.

Automatic generation of explanations has been studied in
goal recognition settings, where the objective is to infer the
latent goal state that best explains the incomplete sequence
of observations [Ramırez and Geffner, 2010; Sohrabi et al.,
2016]. Works on explicable planning emphasize the gener-
ation of plans that are deemed self-explanatory, defined in
terms of optimizing plan costs for a human’s mental model of
the world [Zhang et al., 2017]. Mixed-initiative planners iter-
atively revise their plan generation based on user input (e.g.
action modifications), indirectly promoting an understanding
of differences across newly generated plans through contin-
ual user interaction [Borgo et al., 2018]. All aforementioned
works deal with explainability with respect to a single plan-
ning problem specification, whereas our model deals with ex-
plaining differences in specifications governing two distinct
sets of plans given as input.

Works on model reconciliation focus on producing expla-
nations for planning models (i.e. preconditions and effects),
instead of the realized plans [Chakraborti et al., 2017]. Expla-
nations are specified in the form of model updates, iteratively
bringing an incomplete model to a more complete model.
The term, “contrastive explanation," is used in these works
to identify the relevant differences between the input pair of
models. Our work is similar in spirit but focuses on produc-
ing a specification of differences in the constraints satisfied
among the realized plans. Our approach only requires sets of
observed plan traces as input rather than environment models.

While model updates are an important modality for pro-
viding plan explanations, there are certain limitations. We
note that an optimal plan generated with respect to a complete
environment/world model is not always explicable or self-
explanatory. The space of optimal plans may be large, and
the underlying preference or constraint that drives the gener-
ation of a particular plan may be difficult to pre-specify and
incorporate within the planning model representation. We fo-
cus on explanations stemming directly from the realized plans
themselves. Environment/world models (e.g. PDDL domain
files) can be helpful in providing additional context, but are
not necessary for our approach.

Our work leverages LTL as an explanation language. Tem-
poral patterns can offer greater expressivity and explanatory
power in describing why a set of plans occurred and how they
differ, and may reveal hidden dynamics that cannot be cap-
tured by the use of surface-level metrics like plan costs or ac-
tion similarities. LTL can represent temporally extended (i.e.,
non-Markovian) patterns like safety and reachability rules,
and complex patterns across state variables.

Prior research into mining LTL specifications has focused
on generating a “summary” explanation of the observed
traces. Kasenberg and Scheutz [2017] explored mining glob-
ally persistent specifications from demonstrated action traces
for a finite state Markov decision process. Lemieux et al.
[2015] introduced Texada, a system for mining all possible
instances of a given LTL template from an output log where
each unique string is represented as a new proposition. Shah
et al. [2018] proposed a template-based probabilistic model
to infer task specifications given a set of demonstrations.
However, all of these approaches focus on inferring a spec-
ification that all the observation traces satisfy.

For contrastive explanations, Neider and Gavran [2018]
and Camacho and McIlraith [2019] presented SAT-based al-
gorithms to infer a minimal-length LTL specification that de-
lineates between the positive and negative sets of traces. Un-
like existing LTL miners, these algorithms construct an ar-
bitrary LTL specification without requiring predefined tem-
plates. However, they are designed to output only a single
specification,1 and can fail when the sets contain imperfect
traces (i.e., if there exists no specification consistent with ev-
ery single input trace.). We present a probabilistic model for
the same problem and generate multiple contrastive explana-
tions while offering robustness to noisy input.

Some works have proposed algorithms to infer contrastive
explanations for continuous valued time-series data based on
restricted signal temporal logic (STL) [Yoo and Belta, 2017;
Kong et al., 2017]. However, the continuous space semantics
of STL and a restricted subset of temporal operators make the
grammar unsuitable for use with planning domain problems.
To the best of our knowledge, our proposed model is the first
probabilistic model to infer contrastive explanations for sets
of traces in domains defined by PDDL.

3 Preliminaries
3.1 Linear Temporal Logic
Linear Temporal Logic (LTL) provides an expressive gram-
mar for describing temporal behavior [Pnueli, 1977]. An LTL
specification ϕ is constructed from a set of propositions V ,
the standard Boolean operators, and a set of temporal opera-
tors. Its truth value is determined with respect to a trace, π,
which is an infinite or finite sequence of truth assignments for
all propositions in V . The notation π, t |= ϕ indicates that ϕ
holds at time t. The trace π satisfies ϕ (denoted by π |= ϕ)
iff π, 0 |= ϕ. The minimal syntax for LTL can be described
as follows:

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1Uϕ2, (1)

where p is a proposition, and ϕ1 and ϕ2 are valid LTL speci-
fications.

X reads as “next" where Xϕ evaluates as true at t if ϕ
holds in the next time step t + 1. U reads as “until" where
ϕ1Uϕ2 evaluates as true at time step t if ϕ1 is true at that
time and going forward, until a time step is reached where ϕ2

1In order to generate multiple explanations, the prior methods
would require further queries, which involves iterating on the whole
original algorithm.
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Template nT Formula Meaning

ϕglobal 1 Gpi pi is true throughout the entire trace.
ϕeventuality 1 Fpi pi eventually occurs (may later become false).
ϕatmostonce 1 G(pi → (piW G¬pi)) Only one contiguous interval exists where pi is true.
ϕstability 1 FGpi ∧ G(pi → (piW G¬pi)) pi eventually occurs and stays true forever.
ϕuntil 2 piUpj pi has to be true until pj eventually becomes true.
ϕresponse 2 G(pi → XFpj) If pi occurs, pj eventually follows.
ϕprecedence 2 (pj ∧ ¬pi)R(¬pi) If pi occurs, pj occurred in the past.

Table 1: An example set of LTL templates. nT corresponds to the number of free propositions for each template.

becomes true. In addition to the minimal syntax, we also use
higher-order temporal operators: F (eventually), G (global),
W (weak until), and R (release). Fϕ holds true at t if ϕ holds
for some time step ≥ t. Gϕ holds true at t if ϕ holds for all
time steps ≥ t. ϕ1Wϕ2 is equivalent to ϕ1U(ϕ2 ∨ Gϕ1),
where it does not enforce ϕ2 to occur. ϕ1Rϕ2 holds true
at time step t if either there exists a time step t1 ≥ t such
that ϕ2 holds true until t1 where both ϕ1 and ϕ2 hold true
simultaneously, or no such t1 exists and ϕ2 holds true for all
time steps ≥ t.

Interpretable sets of LTL templates have been defined and
successfully integrated for a variety of software verification
systems [Yang et al., 2006]. Some of the widely used tem-
plates are shown in Table 1.

3.2 Contrastive Explanation
According to Elzein [2018], a contrastive explanation de-
scribes “why event A occurred as opposed to some alternative
event B." In our problem, events A and B represent two sets
of plan traces. The form of why may be expressed in various
ways [Lombrozo, 2006]; our choice is to define it according
to the plans’ satisfaction of a constraint. Then, formally:

Definition 3.1. A contrastive explanation is a constraint ϕ
that it is satisfied by one set of plan traces (positive set, πA),
but not by the other (negative set, πB).

The constraint ϕ can be seen as a behavior classifier try-
ing to separate the provided positive and negative traces. Its
performance measure corresponds to standard classification
accuracy, computed by counting the number of traces in πA
that satisfy ϕ and, conversely, the number of traces in πB
where ϕ is unsatisfied. Formally, accuracy of ϕ is:

|{π : π |= ϕ, π ∈ πA}|+ |{π : π 2 ϕ, π ∈ πB}|
|πA|+ |πB|

(2)

Accuracy is 1 for a perfect contrastive explanation, and ap-
proaches zero if both sets contains no valid trace with respect
to ϕ (i.e., all traces in πA dissatisfy ϕ and all traces in πB
satisfy ϕ).

4 Problem Statement and Approach
The input to the problem is a pair of sets of traces (πA,πB).
Each πi ∈ π is a trace on the set of propositions V (we
refer to V as the vocabulary). The output is a set of specifi-
cations, {ϕ}, where each ϕ achieves perfect or near-perfect
contrastive explanation. We use LTL specifications for the

choice of ϕ and utilize a set of interpretable LTL templates
that are widely used in the development of software systems,
such as those shown in Table 1.

4.1 Hypothesis Space
Our hypothesis space is restricted to a finite set of LTL
templates. Once a LTL template T is selected, it is in-
stantiated with a selection of nT propositions denoted by
p ∈ V nT . The candidate formula ϕ is then composed
as a conjunction of multiple instantiations of a template T
based on a set of selections {p} ⊆ V nT . For example,
an instantiation of T = “global" with p = [apple] is writ-
ten as G(apple). If the selected subset of propositions is
{p} = {[apple], [banana], [carrot]}, then ϕ = G(apple) ∧
G(banana) ∧G(carrot), asserting the global condition for
all three propositions. Conjunctions can provide powerful se-
mantics with the ability to capture a notion of quantification.
Formally, our LTL specification is written as follows:

ϕT =
∧
p∈{p}

T (p), (3)

Note that the number of free propositions, nT , varies per
LTL template. The number of possible specifications for a
given LTL template T is 2|V |

nT . Instead of extracting spec-
ifications narrowed down to a single template query, our hy-
pothesis space Φ is set to include a number of predefined
templates, T1, T2, ...Tk. With k representing the number of
possible templates, the full hypothesis space of Φ grows with
O(k · 2|V |nT ). Employing brute force enumeration to find
{ϕ} that achieves the contrastive explanation criterion rapidly
becomes intractable with increasing vocabulary size.

The graphical model shown in Figure 1 visually depicts the
production rules of our hypothesis space. Note that we could
have expressed the rules as a context-free grammar, but due to
constraints such as the sharing of templates across conjuncts,
it would have not resulted in a compact representation.

4.2 Bayesian Inference
We model specification learning as a Bayesian inference
problem, building on the fundamental Bayes theorem:

P (ϕ | X) =
P (ϕ)P (X | ϕ)∑

ϕ∈Φ P (ϕ)P (X | ϕ)
(4)

Our goal is to infer ϕ∗ = argmaxΦ P (ϕ|X). P (ϕ) rep-
resents the prior distribution over the hypothesis space, and
P (X | ϕ) is the likelihood of observing the evidence X =
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Figure 1: A graphical model of BayesLTL. ϕ represents the latent
LTL specification that we seek to infer given the evidence X (in our
case, the positive and negative sets of traces).

(πA,πB) given ϕ. We adopt a probabilistic generative mod-
eling approach that has been used extensively in topic mod-
eling [Blei et al., 2003]. Below, we describe each component
of our generative model, depicted in Figure 1.

Prior Function
Our prior function serves as a preference module for the sys-
tem designer. ϕ is generated by choosing a LTL template, T ,
the number of conjunctions, N , and then the proposition in-
stantiations, p for each conjunct. The generative process for
each of those components is as follows:

T ∼ Categorical(wT ) (5)
N ∼ Geometric(λ) (6)
p ∼ Categorical(wp) (7)

T is generated with respect to a categorical distribution
with weights wT ∈ Rk over the k possible LTL templates.
wT is a hyperparameter that the designer can set to assert
preferences for mining certain types of templates over oth-
ers (e.g., preferring templates with “global” operators than
“until” operators).

The number of conjunctions, N = |{p}|, is generated us-
ing a geometric distribution with a decay rate of λ. Thus, the
the probability ofϕ is reduced by λ for each addition of a con-
junct, incentivizing low-complexity specifications defined in
terms of having a fewer number of conjunctions (which also
implies fewer total propositions). This promotes conciseness
and prevents over-fitting to the input traces (i.e., to avoid re-
stating the input as a long, convoluted LTL formula).

Similar to the method used for template selection, we use
a separate categorical distribution for selecting propositions
p for each conjunct in ϕ. Propositions are generated with
respect to the probability weights, wp ∈ R|V |, defined for
all p in V. The designer can likewise control wp to favor
specifications instantiated with certain types of propositions
over others. wp may be interpreted as the level of saliency of
propositions for an application. (For example, propositions
that are landmarks for planning problems [Hoffmann et al.,
2004], or a part of the causal links set [Veloso and Blythe,
1994], may be deemed more important to express in plan ex-
planations than other auxiliary state variables.) Several forms

of variable importance, corresponding to the saliency of that
importance in an explanation, may be applied to set wp. This
opens the door to hypothesizing which propositions are most
salient for a given domain, and generating explanations re-
stricted to those propositions exclusively.

The full prior function, P (ϕ), is evaluated as follows:

P (ϕ) = P (T )P (N)P ({p}) (8)

The derivation follows from the definition that T , N , {p}
completely describe ϕ (i.e. P (ϕ | T,N, {p}) = 1), and the
assumption that the three probability distributions are inde-
pendent of each other. P (T ) and P (N) are calculated us-
ing categorical and geometric distributions outlined in Equa-
tions 5 and 6, respectively. P ({p}) denotes the probability of
the full set of proposition instantiations (over all conjuncts);
it is calculated by the average categorical weight, wp, over all
propositions. Formally:

P ({p}) =
∑
p∈{p}

∑
p∈p wp

N |p|
(9)

For example, with {p} = {[a, b], [a, c], [b, c]}, and wa =

5/10, wb = 4/10, wc = 1/10, P ({p}) = 20/10
6 = 1/3.

Likelihood Function
Our likelihood function is responsible for asserting contrast
between the two input sets. P (X | ϕ) is the probability of
observing the input sets of traces in the satisfying set πA and
the non-satisfying set πB given the contrastive specification.
The traces in πA and πB are generated by different solutions
to the planning problem that satisfy the problem specification.
As the problem specification is the only input needed to gen-
erate a set of plans, we assume that the individual traces are
conditionally independent of each other, given the planning
problem specification. With the conditional independence as-
sumption, the likelihood can then be factored as follows:

P (X | ϕ) =
|πA|∏
i=1

P (πi|ϕ)
|πB |∏
j=1

P (πj |ϕ) (10)

LTL satisfaction checks are conducted over all traces be-
longing to sets πA and πB; P (πi|ϕ) is set equal to 1 − α if
πi |= ϕ, and α otherwise. Conversely, P (πj |ϕ) is set equal
to 1−β if πj 2 ϕ, and β otherwise. α and β permit non-zero
probability to traces not adhering to the constrastive expla-
nation criterion, thereby providing robustness to noisy traces
and outliers. α and β may be set to different values to reflect
the relative importance of the positive and negative sets.

In order to perform LTL satisfaction checks on a trace, we
follow the method developed by Lemieux et al. [2015], in
which ϕ is represented as a tree and each temporal operator is
recursively evaluated according to its semantics. Since sub-
trees of two different ϕ may be identical, we memoize and
re-use evaluation results to significantly speed up LTL satis-
faction checks. We follow the semantics of LTL interpreted
over finite traces [De Giacomo and Vardi, 2013].
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Proposal Function
Exact inference methods to find maximum a posterior
(MAP) estimates, {ϕ∗}, are intractable. Thus we imple-
ment a Markov Chain Monte Carlo method, specifically the
Metropolis-Hasting (MH) algorithm [Chib and Greenberg,
1995], to iteratively draw samples whose collection approx-
imates the true posterior distribution. MH sampling requires
a user-defined proposal function F (ϕ′|ϕ) that samples a new
candidate ϕ′ given the current ϕ. Our F behaves similar to an
ε-greedy search, utilizing a drift kernel (i.e. a random walk)
with a probability of 1 − ε or sampling from the prior distri-
bution (i.e. a restart) with a probability of ε. The drift kernel
operates by performing one of the following moves on the
current candidate LTL ϕ:

• Remain within the current template T , add a new con-
junct, and instantiate that conjunct with a randomly sam-
pled p that is currently not in ϕ. The probability associ-
ated with this move, Qadd, is equal to 1/(|VnT | −N).

• Remain within the current template T and randomly re-
move one of the existing conjuncts. The probability as-
sociated with this move, Qremove, is equal to 1/N .

The selection between these two moves is conducted uni-
formly, though there is no issue with allowing the designer
to weight one more likely than the other. Note that the drift
kernel perturbs ϕ, but stays within the current template. ϕ
transitions to a new template (probabilistically) when choos-
ing to sample from the prior distribution, which has support
over the full hypothesis space.

The probability distribution associated with F , denoted by
Q(ϕ′|ϕ), is then outlined as follows:

(1− ε) · 0.5 ·Qadd(ϕ
′|ϕ) , drift (add move)

(1− ε) · 0.5 ·Qremove(ϕ
′|ϕ) , drift (remove move)

ε · P (ϕ′) , sample prior function

Our proposal function F fulfills the ergodicity condition
of the Markov process (the transition from any ϕ to ϕ′ is
aperiodic and occurs within a finite number of steps), thus
asymptotically guarantees the sampling process from the true
posterior distribution.

A new sample ϕ′ is accepted at every MH iteration with
the following probability:

min

(
1,
P (ϕ′)P (X|ϕ′)Q(ϕ|ϕ′)
P (ϕ)P (X|ϕ)Q(ϕ′|ϕ)

)
, (11)

The set of accepted samples approximates the true poste-
rior, and the MAP estimates (the output {ϕ∗}) are determined
from the relative frequencies of accepted samples.

Model Summary
Overall, the inductive biases of BayesLTL include 1) a bias
towards having simpler explanations, 2) designer-controlled
biases towards mining preferred templates and propositions,
and 3) a search bias towards considering candidate specifica-
tions that are syntactically similar to the incumbent sample.
These biases are all incorporated and jointly factored in a sin-
gle Bayesian inference model.

5 Evaluations
5.1 Derivation of Evaluation Dataset
We evaluated the effectiveness of BayesLTL for inferring
contrastive explanations from sets of traces generated from
International Planning Competition (IPC) planning domains
[Long and Fox, 2003]. The plan traces in πA were gener-
ated by first injecting the ground truth ϕground into the origi-
nal PDDL domain/problem files, enforcing valid plans on the
modified domain/problem files to satisfy ϕground. The LTL
injection to create modified files was performed using the ltl-
fond2fond tool [Camacho et al., 2017]. Second, a state-of-
the-art top-k planner [Katz et al., 2018] was used to produce
a set of distinct, valid plans and their accompanying state ex-
ecution traces. (An alternative would have been to use a di-
verse planner [Nguyen et al., 2012], but the existing ones did
not support the required expressivity of conditional effects in
the modified planning files.)

Similarly, the above steps were repeated to generate execu-
tion traces for πB , wherein the negation of the ground truth
specification, ¬ϕground, was injected to the planning files,
and then a set of traces was collected. Such a setup guar-
antees the existence of contrastive explanation solutions on
(πA,πB), which includes (but is not limited to) ϕground. We
collected twenty traces for each set.

We evaluated our model using six different IPC benchmark
domains, containing problems related to mission planning,
vehicle routing, and resource allocation. For each of these
domains, we tested three different problem instances of in-
creasing vocabulary size, and on twenty randomly generated
ϕground specifications for each problem instance.

5.2 Experiment Details
For each test case, ϕground was randomly generated using
one of the seven LTL templates listed in Table 1; thus the
hypothesis space Φ was set to include all possible specifica-
tions over the predefined templates. The categorical distri-
bution weights, wT and wp, were set to be uniform. Other
hyperparameters were set as follows: α = β = 0.01, to put
equal importance of positive and negative sets, λ = 0.7 to pe-
nalize ϕ for every additional conjunct, and ε = 0.2 to apply
ε-greedy search in the the proposal function. We ran the MH
sampler with numMH = 2, 000 iterations with the first 300
used as a burn-in period. Our experimental results were found
to be robust to the various settings of these hyperparameters
(evaluated by a grid search).

5.3 Model Comparisons
We evaluated BayesLTL against the SAT-based miner2 devel-
oped by Neider and Gavran [2018], the state-of-the-art for
extracting contrastive LTL specifications. We also evaluated
our model against brute force enumeration, a common ap-
proach employed by existing LTL miners for summarization
[Yang et al., 2006; Lemieux et al., 2015]. Because enumer-
ating through full space of Φ would result in a time out, we
tested delimited enumeration with only a random subset of
brute force samples. This baseline selects a random subset

2https://github.com/gergia/samples2LTL (commit: 69f692a).
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Domain |V | BayesLTL Enumeration Neider & Gavran
M Acc M Acc M TimeOut

blocks-
world

16 3.1 0.97 0.9 0.96 1 10 / 20
25 8.1 1.00 0.8 0.95 1 10 / 20
55 30.2 0.99 0.7 0.83 0 20 / 20

storage
11 4.4 0.94 1.7 0.97 1 16 / 20
20 11.5 0.97 1.0 0.94 1 14 / 20
42 31.5 0.98 0.9 0.93 1 11 / 20

satellite
17 22.3 1.00 3.7 0.97 1 6 / 20
37 28.0 0.98 0.9 0.85 1 8 / 20
50 84.6 0.97 1.0 0.94 1 8 / 20

zeno-
travel

18 3.7 0.99 2.1 0.99 1 8 / 20
22 21.0 1.00 1.7 0.99 1 8 / 20
40 78.6 0.99 1.5 0.99 1 3 / 20

TPP
14 7.5 1.00 1.1 0.95 0 20 / 20
18 9.7 1.00 0.8 0.95 0 20 / 20
36 114.5 0.99 2.3 0.96 1 14 / 20

rovers
20 24.5 1.00 2.3 0.99 1 5 / 20
22 28.3 1.00 2.3 0.99 1 10 / 20
28 18.6 0.98 1.0 0.97 1 11 / 20

Table 2: Inference results on extracting contrastive explanations
across different approaches. Each row reports the averages across
twenty ϕground test cases. M denotes the number of unique con-
trastive explanations, and Acc reports their average accuracy.

of size numbrute from Φ. Then, a function proportional to
the posterior distribution (numerator in Equation 4) is evalu-
ated for each of the samples to determine {ϕ∗}. numbrute

was set equal to numMH to enable a fair baseline in terms of
having the same amount of allotted computation. All exper-
iments were conducted on Debian machines with Intel Xeon
E3-1200 CPUs at 1.8 GHz using up to 4 GB of RAM.

6 Results and Discussion
Table 2 shows the inference results on the tested domains and
on problem instances of varying complexity. For evaluation
metrics, we measured M = |{ϕ∗}|, the number of unique con-
trastive explanations extracted by the different approaches,
along with the explanations’ accuracy.

High M and high accuracy across all domain-problem
combinations demonstrate how our probabilistic model was
able to generate multiple, near-perfect contrastive explana-
tions. The solution set {ϕ∗} almost always included ϕground.
Our model outperformed the baseline and the state-of-the-art
miner by producing more contrastive explanations within an
allotted amount of computation / runtime.

The runtime for our model and the delimited enumeration
baseline with 2,000 samples ranged between 1.2 – 4.7 sec-
onds (increase in |V | only had marginal effect on the run-
time). The SAT-based miner by Neider and Gavran often
failed to generate a solution within a five minute cutoff (see
the number of its timeout cases in the last column of Table 2).
The prior work is designed to output a single ϕ∗, which fre-
quently took on a form of Fpi. It did not scale well to prob-
lems that required more complex ϕ as solutions. This is be-
cause increasing the “depth" of ϕ (the number of temporal /

 

Figure 2: The max accuracy of {ϕ∗} with respect to the number
of sampling iterations. The comparison is shown for both the MH
sampler and the delimited enumeration baseline. Each domain sub-
plot shows the averages all three problem instances and all twenty
ϕground test cases. 95% confidence intervals are displayed.

Boolean operators and propositions) exponentially increased
the size of the compiled SAT problem. In our experiments,
the prior work often timed out for problems requiring solu-
tions with depth ≥ 4 (note that Fpi has a depth of 2).

Figure 2 compares the search efficiency between our model
and the delimited enumeration baseline. By employing more
informed search with the MH sampler, BayesLTL discovered
contrastive explanations with high accuracy with much fewer
iterations and lower variance than compared to the baseline.
The trend was consistent across all test domains.

Robustness to Noisy Input

In order to test robustness, we perturbed the input X by ran-
domly swapping traces between πA and πB . For example,
a noise rate of 0.2 would swap 20% of the traces, where the
accuracy of ϕground on the perturbed data, X̃ = (π̃A, π̃B),
would evaluate to 0.8 (note that it may be possible to discover
other ϕ that achieve better accuracy on X̃). The MAP esti-
mates inferred from X̃, {ϕ̃∗}, were evaluated on the original
input X to assess any loss of ability to provide contrast.

Figure 3 shows the average accuracy of {ϕ̃∗}, evaluated on
both X̃ and X, across varying noise rate. Even at a moderate
noise rate of 0.25, the inferred ϕ̃∗s were able to maintain an
average accuracy greater than 0.9 on X. Such a threshold
is promising for real-world applications. The robustness did
start to sharply decline as noise rate increased past 0.4. For
all test cases, the Neider and Gavran miner failed to generate
a solution for anything with a noise rate ≥ 0.1.
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Figure 3: The accuracy of ϕ̃∗ with respect to increasing noise rate.
ϕ̃∗ is inferred from the perturbed, noisy data and then is evalu-
ated (generalized) on the original input X . Each domain subplot
shows the averages across all three problem instances and all twenty
ϕground test cases. 95% confidence intervals are displayed.

Solution Space of Contrastive Explanations
Large values of M can indicate how there are often various
ways to express how plan traces differ using the LTL seman-
tics. Some LTL specifications are logically dependent. For
example, the global template subsumes both the stability and
the eventuality template. LTL specifications may also be re-
lated through substitutions of propositions. For example, on
problems where holding a block is a prerequisite to plac-
ing it onto a table, ϕ1 = F(holding_A) ∧ F(holding_B)
will be satisfied in concert with the satisfaction of ϕ2 =
F(ontable_A)∧F(ontable_B). For contrastive explanation,
however, one needs to be mindful of both positive and nega-
tive sides of satisfaction which affect accuracy. Relations like
template subsumptions or precondition / effect pairs should
not be simply favored without understanding that the con-
verse may not hold and may result in worse accuracy.

Evaluation of LTL is trace-dependent, which depends on
the domain and the problem directly. Thus, defining the met-
ric space between two arbitrary LTL specifications is non-
trivial. If such a metric space can be defined however (future
work), it may integrated as part of our MH proposal function
F (ϕ′|ϕ) to sample new contrastive ϕ more efficiently.

For a contrastive ϕ, it is possible to create a new contrastive
ϕ′ that includes stationary propositions or tautologies specific
to the problem. For example, if ϕ1 = F(holding_A) ∧
F(holding_B) is a contrastive explanation, so is ϕ3 =
F(holding_A)∧F(holding_B)∧F(earth_is_round). Our
posterior distribution assigns a lower probability to ϕ3 than
ϕ1 based on the decay rate on the number of conjunctions.

Also, tautologies by themselves cannot be contrastive expla-
nations, because they can never be dissatisfied. Our model
appropriately excluded such vacuous explanations.

Table 2 shows how M generally increased as |V | increased.
Our premise is that multiple explanations can help in acquir-
ing a diverse set of temporal relations, which together cap-
tures the overall behavior of a system. It permits flexibility
for the human supervisor, who can flush out specifications
that are deemed more or less interesting (based on personal
preference or domain-specific constraints unknown apriori).
However, this also opens up an interesting research direction
for determining a minimal set of {ϕ} automatically. We reit-
erate how quantifying the distance or a notion of orthogonal-
ity between LTL formulas is an open research problem.

Evaluation on a Real-world Inspired Domain
We applied our inference model on a large force exercise
(LFE) domain, which simulate air-combat games used to train
pilots. Through the use of Joint Semi-Automated Forces en-
vironment [Anastasiou, 2006], realistic aircraft behavior and
their state execution traces were collected for the mission ob-
jective of “gain and maintain air superiority.” A total of 24
instances (i.e. traces) of LFEs were separated into positive
and negative sets by a subject matter expert. The detail of
the input was as follows: |πA|=16, |πB|=8, |V |=15, and the
average length of traces involved 11 time steps.

Within a second (2,000 samples), our model generated ten
unique contrastive explanations, all with accuracy of 0.96.
ϕ∗1 = G(attrition < 0.25) ∧ G(striker not shot) rep-
resented how friendly attrition rate should be always less
than 25% and that the striker aircraft should never be shot
upon. ϕ∗2 = (attrition < 0.25) U (weapon release) as-
serted how friendly attrition rate has to be less than 25% be-
fore releasing the weapon. The model also inferred some
rules of the environment, for example, asserting that propo-
sitions (attrition < 0.75) and (attrition < 0.50) precede
(attrition < 0.25) (which makes sense because attrition can
only increase throughout the mission). After discussion with
the expert, we discovered that the model could not generate
the perfect contrastive ϕground, because it required having
multiple conjuncts that incorporate different LTL templates
(which is not part of our defined hypothesis space). Never-
theless, the generated explanations were consistent with the
expert’s interpretation of achieving the mission objective of
air superiority.

7 Conclusion
We have presented BayesLTL, a probabilistic Bayesian model
to infer contrastive LTL specifications describing how two
sets of plan traces differ. Our model generates multiple con-
trastive explanations more efficiently than the state-of-the-art
and demonstrates robustness to noisy input. It also provides
a principled approach to incorporate various forms of prior
knowledge or preferences during search. It can serve as a
strong foundation that can be naturally extended to multiple
input sets by repeating the algorithm for all pairwise compar-
isons. Interesting avenues for future work include gauging
the saliency of propositions, as well as deriving a minimal set
of contrastive explanations.
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